Suppr超能文献

Factors affecting acoustically triggered release of drugs from polymeric micelles.

作者信息

Husseini G A, Myrup G D, Pitt W G, Christensen D A, Rapoport N Y

机构信息

Department of Bioengineering and Center for Biopolymers at Interfaces, 20 S. 2030 E. room 108, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Control Release. 2000 Oct 3;69(1):43-52. doi: 10.1016/s0168-3659(00)00278-9.

Abstract

A custom ultrasonic exposure chamber with real-time fluorescence detection was used to measure acoustically-triggered drug release from Pluronic P-105 micelles under continuous wave (CW) or pulsed ultrasound in the frequency range of 20 to 90 kHz. The measurements were based on the decrease in fluorescence intensity when drug was transferred from the micelle core to the aqueous environment. Two fluorescent drugs were used: doxorubicin (DOX) and its paramagnetic analogue, ruboxyl (Rb). Pluronic P-105 at various concentrations in aqueous solutions was used as a micelle-forming polymer. Drug release was most efficient at 20-kHz ultrasound and dropped with increasing ultrasonic frequency despite much higher power densities. These data suggest an important role of transient cavitation in drug release. The release of DOX was higher than that of Rb due to stronger interaction and deeper insertion of Rb into the core of the micelles. Drug release was higher at lower Pluronic concentrations, which presumably resulted from higher local drug concentrations in the core of Pluronic micelles when the number of micelles was low. At constant frequency, drug release increased with increasing power density. At constant power density and for pulse duration longer than 0.1 s, peak release under pulsed ultrasound was the same as stationary release under CW ultrasound. Released drug was quickly re-encapsulated between the pulses of ultrasound, which suggests that upon leaving the sonicated volume, the non-extravasated and non-internalized drug would circulate in the encapsulated form, thus preventing unwanted drug interactions with normal tissues.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验