Suppr超能文献

癌症治疗中的超声响应性纳米载体:综述

Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review.

作者信息

Awad Nahid S, Paul Vinod, AlSawaftah Nour M, Ter Haar Gail, Allen Theresa M, Pitt William G, Husseini Ghaleb A

机构信息

Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates.

Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, U.K.

出版信息

ACS Pharmacol Transl Sci. 2021 Mar 3;4(2):589-612. doi: 10.1021/acsptsci.0c00212. eCollection 2021 Apr 9.

Abstract

The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.

摘要

将抗癌药物安全有效地递送至病变组织是癌症治疗中的重大挑战之一。传统抗癌药物通常是细胞毒素,其药代动力学和生物利用度较差。纳米载体是为实现抗癌药物和基因向肿瘤的选择性转运而设计的纳米级颗粒。它们足够小,可以渗出进入实体肿瘤,在肿瘤中通过被动渗漏或生物降解缓慢释放其治疗载荷。使用智能纳米载体,当纳米载体受到某些内部(酶、pH值和温度)或外部(光、磁场和超声)施加的刺激,以安全、可控的方式在空间和时间上触发其载荷释放时,所包裹治疗药物的释放速率可以提高,并且肿瘤细胞可以更多地接触到治疗药物。本文综述了不同类型的刺激响应性纳米载体的最新研究成果及其在癌症治疗中的应用,尤其侧重于超声。

相似文献

1
Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review.
ACS Pharmacol Transl Sci. 2021 Mar 3;4(2):589-612. doi: 10.1021/acsptsci.0c00212. eCollection 2021 Apr 9.
2
Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review.
Pharmaceutics. 2024 Oct 27;16(11):1383. doi: 10.3390/pharmaceutics16111383.
3
Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications.
Adv Drug Deliv Rev. 2012 Jun 15;64(9):866-84. doi: 10.1016/j.addr.2012.01.020. Epub 2012 Feb 11.
4
Stimuli-responsive chitosan-based nanocarriers for cancer therapy.
Bioimpacts. 2017;7(4):269-277. doi: 10.15171/bi.2017.32. Epub 2017 Nov 15.
5
Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms.
Expert Opin Drug Deliv. 2022 Nov;19(11):1487-1504. doi: 10.1080/17425247.2022.2134853. Epub 2022 Oct 18.
6
Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions.
J Control Release. 2023 Mar;355:552-578. doi: 10.1016/j.jconrel.2023.02.009. Epub 2023 Feb 15.
7
Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy.
Nanomicro Lett. 2023 Feb 8;15(1):44. doi: 10.1007/s40820-023-01018-4.
8
Trigger responsive polymeric nanocarriers for cancer therapy.
Biomater Sci. 2015 Jul;3(7):955-87. doi: 10.1039/c5bm00002e. Epub 2015 Feb 27.
9
Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery.
Saudi Pharm J. 2020 Mar;28(3):255-265. doi: 10.1016/j.jsps.2020.01.004. Epub 2020 Jan 24.
10
Advances on Magnetic Nanocarriers Based on Natural Polymers.
Curr Pharm Des. 2016;22(22):3353-63. doi: 10.2174/1381612822666160209152214.

引用本文的文献

1
Responsive biomaterials for therapeutic strategies of hepatocellular carcinoma.
Front Bioeng Biotechnol. 2025 Aug 20;13:1673134. doi: 10.3389/fbioe.2025.1673134. eCollection 2025.
2
Nanocarrier-Based Systems for Targeted Delivery: Current Challenges and Future Directions.
MedComm (2020). 2025 Aug 21;6(9):e70337. doi: 10.1002/mco2.70337. eCollection 2025 Sep.
3
Ferroptosis induction by engineered liposomes for enhanced tumor therapy.
Beilstein J Nanotechnol. 2025 Aug 14;16:1325-1349. doi: 10.3762/bjnano.16.97. eCollection 2025.
6
Engineered nanoparticles for imaging and targeted drug delivery in hepatocellular carcinoma.
Exp Hematol Oncol. 2025 Apr 30;14(1):62. doi: 10.1186/s40164-025-00658-z.
7
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems.
Pharmaceutics. 2025 Feb 24;17(3):296. doi: 10.3390/pharmaceutics17030296.
8
Non-porous silica nanoparticles as a cavitation sensitive vehicle for antibiotic delivery.
Ultrason Sonochem. 2025 May;116:107316. doi: 10.1016/j.ultsonch.2025.107316. Epub 2025 Mar 17.
9
Polymeric nanocarriers for therapeutic gene delivery.
Asian J Pharm Sci. 2025 Feb;20(1):101015. doi: 10.1016/j.ajps.2025.101015. Epub 2025 Jan 4.
10
Advances in Ultrasound-Targeted Microbubble Destruction (UTMD) for Breast Cancer Therapy.
Int J Nanomedicine. 2025 Feb 3;20:1425-1442. doi: 10.2147/IJN.S504363. eCollection 2025.

本文引用的文献

1
Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor.
Asian J Pharm Sci. 2021 Mar;16(2):161-174. doi: 10.1016/j.ajps.2019.08.001. Epub 2019 Sep 5.
2
Effect of Pegylation and Targeting Moieties on the Ultrasound-Mediated Drug Release from Liposomes.
ACS Biomater Sci Eng. 2020 Jan 13;6(1):48-57. doi: 10.1021/acsbiomaterials.8b01301. Epub 2019 Jul 3.
3
The progress and perspective of nanoparticle-enabled tumor metastasis treatment.
Acta Pharm Sin B. 2020 Nov;10(11):2037-2053. doi: 10.1016/j.apsb.2020.07.013. Epub 2020 Jul 26.
4
BioTM Buzz (Volume 5, Issue 3): The Future is Bright.
Bioeng Transl Med. 2020 Sep 16;5(3):e10185. doi: 10.1002/btm2.10185. eCollection 2020 Sep.
5
SIN List criticism based on misunderstandings.
Nat Nanotechnol. 2020 Jun;15(6):418. doi: 10.1038/s41565-020-0692-7.
6
Targeting cancer stem cell pathways for cancer therapy.
Signal Transduct Target Ther. 2020 Feb 7;5(1):8. doi: 10.1038/s41392-020-0110-5.
7
Fast release behavior of block copolymer micelles under high intensity focused ultrasound/redox combined stimulus.
J Mater Chem B. 2013 Feb 14;1(6):886-894. doi: 10.1039/c2tb00222a. Epub 2012 Dec 20.
8
Recent technological advancements in radiofrequency- andmicrowave-mediated hyperthermia for enhancing drug delivery.
Adv Drug Deliv Rev. 2020;163-164:3-18. doi: 10.1016/j.addr.2020.03.004. Epub 2020 Mar 27.
9
Biomimetic Nanoparticles Camouflaged in Cancer Cell Membranes and Their Applications in Cancer Theranostics.
Front Oncol. 2020 Jan 21;9:1560. doi: 10.3389/fonc.2019.01560. eCollection 2019.
10
Molecular profiling for precision cancer therapies.
Genome Med. 2020 Jan 14;12(1):8. doi: 10.1186/s13073-019-0703-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验