Sensi S L, Yin H Z, Weiss J H
Department of Neurology, University of California Irvine, Irvine, CA 92697-4292, USA.
Eur J Neurosci. 2000 Oct;12(10):3813-8. doi: 10.1046/j.1460-9568.2000.00277.x.
Rapid Zn2+ influx through Ca2+-permeable AMPA/kainate (Ca-A/K) channels triggers reactive oxygen species (ROS) generation and is potently neurotoxic. The first aim of this study was to determine whether these effects might result from direct mitochondrial Zn2+ uptake. Adapting the mitochondrially sequestered divalent cation sensitive probe, rhod-2, to visualize mitochondrial Zn2+, present studies indicate that Zn2+ is taken up into these organelles. The specificity of the signal for Zn2+ was indicated by its reversal by Zn2+ chelation, and its mitochondrial origin indicated by its speckled extranuclear appearance and by its elimination upon pretreatment with the mitochondrial protonophore, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP). Consistent with inhibition of mitochondrial Zn2+ uptake, FCCP also slowed the recovery of cytosolic Zn2+ elevations in Ca-A/K(+) neurons. Further studies sought clues to the high toxic potency of intracellular Zn2+. In experiments using the mitochondrial membrane polarization (DeltaPsi(m))-sensitive probe tetramethylrhodamine ethyl ester and the ROS-sensitive probe hydroethidine, brief kainate exposures in the presence of 300 microM Zn2+ (with or without Ca2+) resulted in prolonged loss of DeltaPsi(m) and corresponding prolonged ROS generation in Ca-A/K(+) neurons, in comparison to the more rapid recovery from loss of DeltaPsi(m) and transient ROS generation after kainate/1.8 mM Ca2+ exposures.
通过钙通透性α-氨基-3-羟基-5-甲基-4-异恶唑丙酸/海人藻酸(Ca-A/K)通道的快速锌离子内流会触发活性氧(ROS)生成,并且具有很强的神经毒性。本研究的首要目的是确定这些效应是否可能源于线粒体对锌离子的直接摄取。通过采用对线粒体隔离的二价阳离子敏感的探针罗丹明-2来可视化线粒体锌离子,目前的研究表明锌离子会被摄取到这些细胞器中。锌离子螯合剂可使该信号反转,这表明了该信号对锌离子的特异性;其核外斑点状外观以及用线粒体质子载体羰基氰化物p-(三氟甲氧基)苯腙(FCCP)预处理后信号消失,这表明了其线粒体来源。与线粒体锌离子摄取受到抑制一致,FCCP也减缓了Ca-A/K(+)神经元中胞质锌离子升高后的恢复。进一步的研究探寻了细胞内锌离子高毒性的线索。在使用线粒体膜电位(ΔΨm)敏感探针四甲基罗丹明乙酯和ROS敏感探针氢乙锭的实验中,与在 kainate/1.8 mM Ca2+ 刺激后ΔΨm 丧失后更快恢复以及短暂的ROS生成相比,在300 μM锌离子(有或没有钙离子)存在的情况下短暂暴露于海人藻酸会导致Ca-A/K(+)神经元中ΔΨm 的长期丧失以及相应的ROS长期生成。