Yin H Z, Ha D H, Carriedo S G, Weiss J H
Department of Neurology, University of California in Irvine, Irvine, CA 92697-4292, USA.
Brain Res. 1998 Jan 19;781(1-2):45-56. doi: 10.1016/s0006-8993(97)01208-0.
The endogenous cation, Zn2+, is synaptically released and may trigger neurodegeneration after permeating through NMDA channels, voltage sensitive Ca2+ channels (VSCC), or Ca2+ permeable AMPA/kainate channels (Ca-A/K). Neurons expressing Ca-A/K can be identified by a histochemical stain based upon kainate-stimulated Co2+ uptake (Co2+(+) neurons). The primary objective of this study was to determine whether a similar approach could be employed to visualize agonist-stimulated intracellular Zn2+ accumulation, and, thus, to test the hypothesis that Ca-A/K permit particularly rapid Zn2+ flux. Substituting Zn2+ for Co2+ during agonist-stimulated uptake, followed by Timm's sulfide-silver staining to visualize intracellular Zn2+, resulted in distinct labeling of a subpopulation of cortical neurons (Zn2+(+) neurons) closely resembling Co2+(+) neurons, suggesting that, like Co2+, Zn2+ may permeate Ca-A/K with particular rapidity. Neither NMDA nor high K+ triggered comparable Zn2+ accumulation, indicating substantially greater permeation through Ca-A/K than through NMDA channels or VSCC. Both fluorescence studies of intracellular Zn2+ accumulation and double staining studies (using SMI-32 and anti-glutamate decarboxylase antibodies, both markers of cortical neuronal subsets), support the contention that Zn2+ and Co2+ labeling identify a common set of neurons characterized by expression of AMPA/kainate channels directly permeable to Zn2+ and Co2+ as well as Ca2+. Furthermore, the preferential destruction of Zn2+(+) neurons (like Co2+(+) neurons) after brief kainate exposures in the presence of lower, more physiologic concentrations of Zn2+ suggests that Zn2+ permeation through Ca-A/K could contribute to selective neurodegeneration in disease. Finally, the study provides a novel and potentially advantageous histochemical approach for kainate-stimulated Co2+ or Zn2+ uptake labeling, using a room temperature technique (Timm's staining) rather than the usual hot AgNO3 development of the Co2+ stain.
内源性阳离子Zn2+可通过突触释放,并在透过N-甲基-D-天冬氨酸(NMDA)通道、电压敏感性Ca2+通道(VSCC)或Ca2+通透性α-氨基-3-羟基-5-甲基-4-异恶唑丙酸/海人藻酸(AMPA/kainate)通道(Ca-A/K)后引发神经退行性变。表达Ca-A/K的神经元可通过基于海人藻酸刺激的Co2+摄取的组织化学染色来识别(Co2+(+)神经元)。本研究的主要目的是确定是否可以采用类似方法来可视化激动剂刺激后的细胞内Zn2+积累,从而检验Ca-A/K允许Zn2+特别快速通量的假说。在激动剂刺激摄取过程中用Zn2+替代Co2+,随后用Timm硫化银染色来可视化细胞内Zn2+,结果导致一群皮质神经元(Zn2+(+)神经元)出现明显标记,与Co2+(+)神经元非常相似,这表明,与Co2+一样,Zn2+可能特别快速地透过Ca-A/K。NMDA和高钾均未引发类似的Zn2+积累,表明透过Ca-A/K的通量比透过NMDA通道或VSCC的通量要大得多。细胞内Zn2+积累的荧光研究和双重染色研究(使用SMI-32和抗谷氨酸脱羧酶抗体,二者均为皮质神经元亚群的标志物)均支持以下观点:Zn2+和Co2+标记识别出一组共同的神经元,其特征是表达对Zn2+、Co2+以及Ca2+均直接通透的AMPA/kainate通道。此外,在较低、更接近生理浓度的Zn2+存在下短暂暴露于海人藻酸后,Zn2+(+)神经元(与Co2+(+)神经元一样)优先被破坏,这表明Zn2+透过Ca-A/K可能导致疾病中的选择性神经退行性变。最后,本研究提供了一种新颖且可能具有优势的组织化学方法,用于海人藻酸刺激的Co2+或Zn2+摄取标记,采用室温技术(Timm染色)而非通常的Co2+染色热硝酸银显影法。