Suppr超能文献

大代谢反应的设计。约束条件与敏感性分析。

Design of large metabolic responses. Constraints and sensitivity analysis.

作者信息

Acerenza L

机构信息

Facultad de Ciencias, Sección Biofísica, Iguá 4225, Montevideo, 11400, Uruguay.

出版信息

J Theor Biol. 2000 Nov 21;207(2):265-82. doi: 10.1006/jtbi.2000.2173.

Abstract

Metabolic control analysis (Kacser & Burns (1973). Symp. Soc. Exp. Biol.27, 65-104; Heinrich & Rapoport (1974). Eur. J. Biochem.42, 89-95) has been extensively used to describe the response of metabolic concentrations and fluxes to small (infinitesimal) changes in enzyme concentrations and effectors. Similarly, metabolic control design (Acerenza (1993). J. theor. Biol.165, 63-85) has been proposed to design small metabolic responses. These approaches have the limitation that they were not devised to deal with large (non-infinitesimal) responses. Here we develop a strategy to design large changes in the metabolic variables. The only assumption made is that, for all the parameter values under consideration, the system has a unique stable steady state. The procedure renders the kinetic parameters of the rate equations that when embedded in the metabolic network produce the pattern of large changes in the steady-state variables that we aim to design. Structural and kinetic constraints impose restrictions on the type of responses that could be designed. We show that these conditions can be transformed into the language of mean-sensitivity coefficients and, as a consequence, a sensitivity analysis of large metabolic responses can be performed after the system has been designed. The mean-sensitivity coefficients fulfil conservation and summation relationships that in the limit reduce to the well-known theorems for infinitesimal changes. Finally, it is shown that the same procedure that was used to design metabolic responses and analyse their sensitivity properties can also be used to determine the values of kinetic parameters of the rate laws operating "in situ".

摘要

代谢控制分析(Kacser和Burns(1973年)。实验生物学学会专题讨论会27,65 - 104;Heinrich和Rapoport(1974年)。欧洲生物化学杂志42,89 - 95)已被广泛用于描述代谢物浓度和通量对酶浓度和效应物的微小(无穷小)变化的响应。同样,代谢控制设计(Acerenza(1993年)。理论生物学杂志165,63 - 85)已被提出用于设计微小的代谢响应。这些方法的局限性在于它们并非为处理大的(非无穷小)响应而设计。在此,我们开发了一种策略来设计代谢变量的大变化。唯一的假设是,对于所考虑的所有参数值,系统具有唯一的稳定稳态。该程序给出了速率方程的动力学参数,当将这些参数嵌入代谢网络时,会产生我们旨在设计的稳态变量的大变化模式。结构和动力学约束对可设计的响应类型施加了限制。我们表明,这些条件可以转化为平均敏感性系数的语言,因此,在系统设计完成后,可以对大的代谢响应进行敏感性分析。平均敏感性系数满足守恒和求和关系,在极限情况下可简化为关于无穷小变化的著名定理。最后,结果表明,用于设计代谢响应并分析其敏感性特性的相同程序也可用于确定“原位”运行的速率定律的动力学参数值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验