Schuster S
Institute of Biology, Humboldt University Berlin, Germany.
J Theor Biol. 1996 Oct 7;182(3):259-68. doi: 10.1006/jtbi.1996.0163.
Metabolic Control Analysis had originally been devised to quantify the effects of changes in enzyme concentrations on steady-state fluxes and metabolite concentrations. In many situations, fluxes and concentrations are not the only relevant variables. A formalism is presented by which the control of generalized variables characterizing biochemical systems can be described. The concepts of "state variables" and "response variables" are introduced. Formulae linking generalized control coefficients to generalized elasticities are established. From these, unified summation and connectivity theorems are derived. These formulae result in some of the well-known equations of Metabolic Control Analysis as special cases when the variables are specified to concentrations or fluxes. It is shown that if the response variables only depend on the state variables or the reaction rates or both, control coefficients do not depend on the special choice of the perturbation parameters. This is no longer the case if the response variables do depend on the parameters directly. The formalism provides framework for dealing with proton-motive force, energy charge and many other variables as special cases. We illustrate the analysis by specifying it to the control analysis of concentration ratios, free-energy differences, transition times, and growth rate.
代谢控制分析最初旨在量化酶浓度变化对稳态通量和代谢物浓度的影响。在许多情况下,通量和浓度并非唯一相关变量。本文提出一种形式体系,用以描述对表征生化系统的广义变量的控制。引入了“状态变量”和“响应变量”的概念。建立了将广义控制系数与广义弹性联系起来的公式。由此推导出统一的求和定理和连通性定理。当变量指定为浓度或通量时,这些公式会得出代谢控制分析中一些著名的方程作为特殊情况。结果表明,如果响应变量仅取决于状态变量或反应速率或两者,则控制系数不取决于扰动参数的特殊选择。如果响应变量确实直接取决于参数,则情况不再如此。该形式体系为将质子动力、能荷及许多其他变量作为特殊情况处理提供了框架。我们通过将其具体应用于浓度比、自由能差、过渡时间和生长速率的控制分析来说明该分析方法。