Suppr超能文献

在基于任务的功能磁共振成像中使用独立成分分析减少运动伪影和噪声以用于脑肿瘤患者的术前规划

Reduction of Motion Artifacts and Noise Using Independent Component Analysis in Task-Based Functional MRI for Preoperative Planning in Patients with Brain Tumor.

作者信息

Middlebrooks E H, Frost C J, Tuna I S, Schmalfuss I M, Rahman M, Old Crow A

机构信息

From the Department of Radiology (E.H.M.), University of Alabama at Birmingham, Birmingham, Alabama

Department of Biology (C.J.F.), University of Louisville, Louisville, Kentucky.

出版信息

AJNR Am J Neuroradiol. 2017 Feb;38(2):336-342. doi: 10.3174/ajnr.A4996. Epub 2016 Nov 10.

Abstract

BACKGROUND AND PURPOSE

Although it is a potentially powerful presurgical tool, fMRI can be fraught with artifacts, leading to interpretive errors, many of which are not fully accounted for in routinely applied correction methods. The purpose of this investigation was to evaluate the effects of data denoising by independent component analysis in patients undergoing preoperative evaluation for glioma resection compared with more routinely applied correction methods such as realignment or motion scrubbing.

MATERIALS AND METHODS

Thirty-five functional runs (both motor and language) in 12 consecutive patients with glioma were analyzed retrospectively by double-blind review. Data were processed and compared with the following: 1) realignment alone, 2) motion scrubbing, 3) independent component analysis denoising, and 4) both independent component analysis denoising and motion scrubbing. Primary outcome measures included a change in false-positives, false-negatives, score, and diagnostic rating.

RESULTS

Independent component analysis denoising reduced false-positives in 63% of studies versus realignment alone. There was also an increase in the score in areas of true activation in 71.4% of studies. Areas of new expected activation (previous false-negatives) were revealed in 34.4% of cases with independent component analysis denoising versus motion scrubbing or realignment alone. Of studies deemed nondiagnostic with realignment or motion scrubbing alone, 65% were considered diagnostic after independent component analysis denoising.

CONCLUSIONS

The addition of independent component analysis denoising of fMRI data in preoperative patients with glioma has a significant impact on data quality, resulting in reduced false-positives and an increase in true-positives compared with more commonly applied motion scrubbing or simple realignment methods.

摘要

背景与目的

尽管功能磁共振成像(fMRI)是一种潜在强大的术前工具,但它可能充满伪影,导致解读错误,而许多此类错误在常规应用的校正方法中并未得到充分考虑。本研究的目的是评估独立成分分析进行数据去噪对接受胶质瘤切除术前评估的患者的影响,并与更常规应用的校正方法(如重排或运动校正)进行比较。

材料与方法

对连续12例胶质瘤患者的35次功能扫描(运动和语言)进行回顾性双盲分析。对数据进行处理,并与以下方法进行比较:1)仅重排,2)运动校正,3)独立成分分析去噪,4)独立成分分析去噪和运动校正。主要观察指标包括假阳性、假阴性、评分和诊断评级的变化。

结果

与仅重排相比,独立成分分析去噪在63%的研究中减少了假阳性。在71.4%的研究中,真正激活区域的评分也有所增加。与运动校正或仅重排相比,独立成分分析去噪在34.4%的病例中发现了新的预期激活区域(先前的假阴性)。在仅通过重排或运动校正被认为无法诊断的研究中,65%在独立成分分析去噪后被认为具有诊断价值。

结论

在术前胶质瘤患者中对fMRI数据添加独立成分分析去噪对数据质量有显著影响,与更常用的运动校正或简单重排方法相比,可减少假阳性并增加真阳性。

相似文献

5
Automatic independent component labeling for artifact removal in fMRI.用于功能磁共振成像中去除伪影的自动独立成分标记
Neuroimage. 2008 Feb 1;39(3):1227-45. doi: 10.1016/j.neuroimage.2007.10.013. Epub 2007 Oct 25.

引用本文的文献

本文引用的文献

1
Head Motion and Correction Methods in Resting-state Functional MRI.静息态功能磁共振成像中的头部运动及校正方法
Magn Reson Med Sci. 2016;15(2):178-86. doi: 10.2463/mrms.rev.2015-0060. Epub 2015 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验