Suppr超能文献

基于双树复小波主系数和 LDA 的阿尔茨海默病的孪生支持向量机分类。

Twin SVM-Based Classification of Alzheimer's Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA.

机构信息

Department of Information and Communication Engineering, Chosun University, 375 Seosuk-Dong, Dong-Gu, Gwangju 501-759, Republic of Korea.

Department of Computer Education, Sungkyunkwan University, 05006 209 Neungjong-ro, Gwangjin-gu, Seoul, Republic of Korea.

出版信息

J Healthc Eng. 2017;2017:8750506. doi: 10.1155/2017/8750506. Epub 2017 Aug 16.

Abstract

Alzheimer's disease (AD) is a leading cause of dementia, which causes serious health and socioeconomic problems. A progressive neurodegenerative disorder, Alzheimer's causes the structural change in the brain, thereby affecting behavior, cognition, emotions, and memory. Numerous multivariate analysis algorithms have been used for classifying AD, distinguishing it from healthy controls (HC). Efficient early classification of AD and mild cognitive impairment (MCI) from HC is imperative as early preventive care could help to mitigate risk factors. Magnetic resonance imaging (MRI), a noninvasive biomarker, displays morphometric differences and cerebral structural changes. A novel approach for distinguishing AD from HC using dual-tree complex wavelet transforms (DTCWT), principal coefficients from the transaxial slices of MRI images, linear discriminant analysis, and twin support vector machine is proposed here. The prediction accuracy of the proposed method yielded up to 92.65 ± 1.18 over the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, with a specificity of 92.19 ± 1.56 and sensitivity of 93.11 ± 1.29, and 96.68 ± 1.44 over the Open Access Series of Imaging Studies (OASIS) dataset, with a sensitivity of 97.72 ± 2.34 and specificity of 95.61 ± 1.67. The accuracy, sensitivity, and specificity achieved using the proposed method are comparable or superior to those obtained by various conventional AD prediction methods.

摘要

阿尔茨海默病(AD)是痴呆症的主要病因,会导致严重的健康和社会经济问题。AD 是一种进行性神经退行性疾病,会导致大脑结构发生变化,从而影响行为、认知、情绪和记忆。已经使用了许多多变量分析算法来对 AD 进行分类,将其与健康对照(HC)区分开来。高效地对 AD 和轻度认知障碍(MCI)进行早期分类对于 HC 至关重要,因为早期的预防保健可以帮助减轻风险因素。磁共振成像(MRI)是一种非侵入性的生物标志物,可以显示形态计量差异和大脑结构变化。本文提出了一种使用双树复小波变换(DTCWT)、MRI 图像轴位切片的主系数、线性判别分析和孪生支持向量机来区分 AD 和 HC 的新方法。该方法在阿尔茨海默病神经影像学倡议(ADNI)数据集上的预测准确率高达 92.65±1.18,特异性为 92.19±1.56,敏感性为 93.11±1.29,在开放获取成像研究系列(OASIS)数据集上的预测准确率高达 96.68±1.44,敏感性为 97.72±2.34,特异性为 95.61±1.67。与各种传统的 AD 预测方法相比,该方法的准确率、敏感性和特异性相当或更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b07/5576415/367500b45cd6/JHE2017-8750506.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验