Suppr超能文献

泛化作为学习内部模型神经机制的行为窗口。

Generalization as a behavioral window to the neural mechanisms of learning internal models.

作者信息

Shadmehr Reza

机构信息

Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, 419 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, USA.

出版信息

Hum Mov Sci. 2004 Nov;23(5):543-68. doi: 10.1016/j.humov.2004.04.003.

Abstract

In generating motor commands, the brain seems to rely on internal models that predict physical dynamics of the limb and the external world. How does the brain compute an internal model? Which neural structures are involved? We consider a task where a force field is applied to the hand, altering the physical dynamics of reaching. Behavioral measures suggest that as the brain adapts to the field, it maps desired sensory states of the arm into estimates of force. If this neural computation is performed via a population code, i.e., via a set of bases, then activity fields of the bases dictate a generalization function that uses errors experienced in a given state to influence performance in any other state. The patterns of generalization suggest that the bases have activity fields that are directionally tuned, but directional tuning may be bimodal. Limb positions as well as contextual cues multiplicatively modulate the gain of tuning. These properties are consistent with the activity fields of cells in the motor cortex and the cerebellum. We suggest that activity fields of cells in these motor regions dictate the way we represent internal models of limb dynamics.

摘要

在生成运动指令时,大脑似乎依赖于预测肢体和外部世界物理动态的内部模型。大脑是如何计算内部模型的?涉及哪些神经结构?我们考虑这样一项任务,即向手部施加一个力场,改变伸手动作的物理动态。行为测量表明,随着大脑适应该场,它会将手臂期望的感觉状态映射为力量估计。如果这种神经计算是通过群体编码(即通过一组基)来执行的,那么这些基的活动场决定了一个泛化函数,该函数利用在给定状态下经历的误差来影响任何其他状态下的表现。泛化模式表明,这些基具有方向调谐的活动场,但方向调谐可能是双峰的。肢体位置以及上下文线索会乘法性地调节调谐增益。这些特性与运动皮层和小脑中细胞的活动场一致。我们认为,这些运动区域中细胞的活动场决定了我们表征肢体动力学内部模型的方式。

相似文献

1
Generalization as a behavioral window to the neural mechanisms of learning internal models.
Hum Mov Sci. 2004 Nov;23(5):543-68. doi: 10.1016/j.humov.2004.04.003.
2
Estimating the sources of motor errors for adaptation and generalization.
Nat Neurosci. 2008 Dec;11(12):1454-61. doi: 10.1038/nn.2229. Epub 2008 Nov 16.
3
A gain-field encoding of limb position and velocity in the internal model of arm dynamics.
PLoS Biol. 2003 Nov;1(2):E25. doi: 10.1371/journal.pbio.0000025. Epub 2003 Nov 17.
4
Internal models and contextual cues: encoding serial order and direction of movement.
J Neurophysiol. 2005 Feb;93(2):786-800. doi: 10.1152/jn.00240.2004. Epub 2004 Sep 22.
5
Stimulation of the human motor cortex alters generalization patterns of motor learning.
J Neurosci. 2011 May 11;31(19):7102-10. doi: 10.1523/JNEUROSCI.0273-11.2011.
6
Internal models of limb dynamics and the encoding of limb state.
J Neural Eng. 2005 Sep;2(3):S266-78. doi: 10.1088/1741-2560/2/3/S09. Epub 2005 Aug 31.
7
Neural Tuning Functions Underlie Both Generalization and Interference.
PLoS One. 2015 Jun 25;10(6):e0131268. doi: 10.1371/journal.pone.0131268. eCollection 2015.
9
Cerebellar contributions to reach adaptation and learning sensory consequences of action.
J Neurosci. 2012 Mar 21;32(12):4230-9. doi: 10.1523/JNEUROSCI.6353-11.2012.

引用本文的文献

1
Transfer of motor learning is associated with patterns of activity in the default mode network.
PLoS Biol. 2025 Aug 14;23(8):e3003268. doi: 10.1371/journal.pbio.3003268. eCollection 2025 Aug.
2
Uncovering locomotor learning dynamics in people with Parkinson's disease.
PLoS One. 2025 Jul 31;20(7):e0326692. doi: 10.1371/journal.pone.0326692. eCollection 2025.
3
Success-efficient/failure-safe strategy for hierarchical reinforcement motor learning.
PLoS Comput Biol. 2025 May 9;21(5):e1013089. doi: 10.1371/journal.pcbi.1013089. eCollection 2025 May.
4
Tiny visual latencies can profoundly impair implicit sensorimotor learning.
Sci Rep. 2025 May 8;15(1):16084. doi: 10.1038/s41598-025-98652-2.
5
Cerebellar output shapes cortical preparatory activity during motor adaptation.
Nat Commun. 2025 Mar 15;16(1):2574. doi: 10.1038/s41467-025-57832-4.
6
Cerebellar output shapes cortical preparatory activity during motor adaptation.
bioRxiv. 2025 Mar 1:2024.07.12.603354. doi: 10.1101/2024.07.12.603354.
8
Kernels of Motor Memory Formation: Temporal Generalization in Bimanual Adaptation.
J Neurosci. 2024 Nov 20;44(47):e0359242024. doi: 10.1523/JNEUROSCI.0359-24.2024.
9
The role of training variability for model-based and model-free learning of an arbitrary visuomotor mapping.
PLoS Comput Biol. 2024 Sep 27;20(9):e1012471. doi: 10.1371/journal.pcbi.1012471. eCollection 2024 Sep.
10
The effects of reward and punishment on the performance of ping-pong ball bouncing.
Front Behav Neurosci. 2024 Jun 27;18:1433649. doi: 10.3389/fnbeh.2024.1433649. eCollection 2024.

本文引用的文献

1
Spatial transformations in the parietal cortex using basis functions.
J Cogn Neurosci. 1997 Mar;9(2):222-37. doi: 10.1162/jocn.1997.9.2.222.
2
Random presentation enables subjects to adapt to two opposing forces on the hand.
Nat Neurosci. 2004 Feb;7(2):111-2. doi: 10.1038/nn1184. Epub 2004 Jan 25.
3
A gain-field encoding of limb position and velocity in the internal model of arm dynamics.
PLoS Biol. 2003 Nov;1(2):E25. doi: 10.1371/journal.pbio.0000025. Epub 2003 Nov 17.
6
Learned dynamics of reaching movements generalize from dominant to nondominant arm.
J Neurophysiol. 2003 Jan;89(1):168-76. doi: 10.1152/jn.00622.2002.
7
Transfer of motor learning across arm configurations.
J Neurosci. 2002 Nov 15;22(22):9656-60. doi: 10.1523/JNEUROSCI.22-22-09656.2002.
8
Neuronal populations in primary motor cortex encode bimanual arm movements.
Eur J Neurosci. 2002 Apr;15(8):1371-80. doi: 10.1046/j.1460-9568.2002.01968.x.
9
Early consolidation in human primary motor cortex.
Nature. 2002 Feb 7;415(6872):640-4. doi: 10.1038/nature712. Epub 2002 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验