Suppr超能文献

猫头鹰下丘中解决相位模糊的细胞机制。

Cellular mechanisms for resolving phase ambiguity in the owl's inferior colliculus.

作者信息

Peña J L, Konishi M

机构信息

Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11787-92. doi: 10.1073/pnas.97.22.11787.

Abstract

Both mammals and birds use the interaural time difference (ITD) for localization of sound in the horizontal plane. They may localize either real or phantom sound sources, when the signal consists of a narrow frequency band. This ambiguity does not occur with broadband signals. A plot of impulse rates or amplitude of excitatory postsynaptic potentials against ITDs (ITD curve) consists of peaks and troughs. In the external nucleus (ICX) of the owl's inferior colliculus, ITD curves show multiple peaks when the signal is narrow-band, such as tones. Of these peaks, one occurs at ITDi, which is independent of frequency, and others at ITDi +/- T, where T is the tonal period. The ITD curve of the same neuron shows a large peak (main peak) at ITDi and no or small peaks (side peaks) at ITDi +/- T, when the signal is broadband. ITD curves for postsynaptic potentials indicate that ICX neurons integrate the results of binaural cross-correlation in different frequency bands. However, the difference between the main and side peaks is small. ICX neurons further enhance this difference in the process of converting membrane potentials to impulse rates. Inhibition also appears to augment the difference between the main and side peaks.

摘要

哺乳动物和鸟类都利用双耳时间差(ITD)在水平面内对声音进行定位。当信号由窄频带组成时,它们可以对真实或虚拟声源进行定位。对于宽带信号,这种模糊性不会出现。兴奋性突触后电位的冲动率或幅度相对于ITD的曲线图(ITD曲线)由峰和谷组成。在猫头鹰下丘的外侧核(ICX)中,当信号为窄带时,如纯音,ITD曲线显示多个峰。在这些峰中,一个出现在ITDi,它与频率无关,其他峰出现在ITDi +/- T,其中T是音调周期。当信号为宽带时,同一神经元的ITD曲线在ITDi处显示一个大峰(主峰),在ITDi +/- T处没有或只有小峰(边峰)。突触后电位的ITD曲线表明,ICX神经元整合了不同频带双耳互相关的结果。然而,主峰和边峰之间的差异很小。ICX神经元在将膜电位转换为冲动率的过程中进一步增强了这种差异。抑制作用似乎也增加了主峰和边峰之间的差异。

相似文献

3
Binaural processing in the synthesis of auditory spatial receptive fields.听觉空间感受野合成中的双耳处理
Biol Cybern. 2003 Nov;89(5):371-7. doi: 10.1007/s00422-003-0442-6. Epub 2003 Nov 4.
4
Diverse processing underlying frequency integration in midbrain neurons of barn owls.不同的处理过程基础上中脑神经元频率整合在仓鸮。
PLoS Comput Biol. 2021 Nov 11;17(11):e1009569. doi: 10.1371/journal.pcbi.1009569. eCollection 2021 Nov.
6
Response adaptation in the barn owl's auditory space map.仓鸮听觉空间图谱中的反应适应性。
J Neurophysiol. 2018 Mar 1;119(3):1235-1247. doi: 10.1152/jn.00769.2017. Epub 2017 Dec 27.

引用本文的文献

4
Diverse processing underlying frequency integration in midbrain neurons of barn owls.不同的处理过程基础上中脑神经元频率整合在仓鸮。
PLoS Comput Biol. 2021 Nov 11;17(11):e1009569. doi: 10.1371/journal.pcbi.1009569. eCollection 2021 Nov.
6
Toric Spines at a Site of Learning.有学习能力的棘突
eNeuro. 2020 Jan 3;7(1). doi: 10.1523/ENEURO.0197-19.2019. Print 2020 Jan/Feb.
8
Optimal nonlinear cue integration for sound localization.用于声音定位的最优非线性线索整合
J Comput Neurosci. 2017 Feb;42(1):37-52. doi: 10.1007/s10827-016-0626-4. Epub 2016 Oct 6.

本文引用的文献

1
A place theory of sound localization.声音定位的地点理论。
J Comp Physiol Psychol. 1948 Feb;41(1):35-9. doi: 10.1037/h0061495.
3
How the owl resolves auditory coding ambiguity.猫头鹰如何解决听觉编码的模糊性。
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10932-7. doi: 10.1073/pnas.95.18.10932.
4
How do owls localize interaurally phase-ambiguous signals?猫头鹰如何定位两耳间相位模糊的信号?
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6465-8. doi: 10.1073/pnas.95.11.6465.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验