Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
Department of Mathematics, Seattle University, Seattle, Washington 98122.
J Neurosci. 2021 Dec 15;41(50):10305-10315. doi: 10.1523/JNEUROSCI.1061-21.2021. Epub 2021 Nov 11.
Space-specific neurons in the owl's midbrain form a neural map of auditory space, which supports sound-orienting behavior. Previous work proposed that a population vector (PV) readout of this map, implementing statistical inference, predicts the owl's sound localization behavior. This model also predicts the frontal localization bias normally observed and how sound-localizing behavior changes when the signal-to-noise ratio varies, based on the spread of activity across the map. However, the actual distribution of population activity and whether this pattern is consistent with premises of the PV readout model on a trial-by-trial basis remains unknown. To answer these questions, we investigated whether the population response profile across the midbrain map in the optic tectum of the barn owl matches these predictions using multielectrode array recordings. We found that response profiles of recorded subpopulations are sufficient for estimating the stimulus interaural time difference using responses from single trials. Furthermore, this decoder matches the expected differences in trial-by-trial variability and frontal bias between stimulus conditions of low and high signal-to-noise ratio. These results support the hypothesis that a PV readout of the midbrain map can mediate statistical inference in sound-localizing behavior of barn owls. While the tuning of single neurons in the owl's midbrain map of auditory space has been considered predictive of the highly specialized sound-localizing behavior of this species, response properties across the population remain largely unknown. For the first time, this study analyzed the spread of population responses across the map using multielectrode recordings and how it changes with signal-to-noise ratio. The observed responses support the hypothesis concerning the ability of a population vector readout to predict biases in orienting behaviors and mediate uncertainty-dependent behavioral commands. The results are of significance for understanding potential mechanisms for the implementation of optimal behavioral commands across species.
特定于空间的中脑神经元在猫头鹰的中脑中形成听觉空间的神经图谱,支持声音定向行为。以前的工作提出,对该图谱进行群体矢量 (PV) 读取,实施统计推断,可预测猫头鹰的声音定位行为。该模型还预测了通常观察到的正面定位偏差,以及当信号噪声比变化时,根据图谱上活动的扩散,声音定位行为如何变化。然而,群体活动的实际分布以及这种模式是否与 PV 读取模型的前提在逐次试验的基础上一致仍然未知。为了回答这些问题,我们使用多电极阵列记录来研究在仓鸮的视顶盖的中脑中,群体反应图谱是否与这些预测相符。我们发现,使用单次试验的反应,可以记录下的子群体的反应图谱足以用于估计刺激的两耳时差。此外,该解码器匹配了低信号噪声比和高信号噪声比刺激条件之间的逐次试验变异性和正面偏差的预期差异。这些结果支持了这样一种假设,即中脑图谱的 PV 读取可以介导仓鸮声音定位行为中的统计推断。虽然猫头鹰听觉空间的中脑图谱中的单个神经元的调谐被认为可以预测该物种高度专业化的声音定位行为,但群体的反应特性在很大程度上仍然未知。这项研究首次使用多电极记录分析了图谱上的群体反应扩散以及其如何随信号噪声比而变化。观察到的反应支持了关于群体矢量读取能力的假设,即预测定向行为的偏差并介导不确定依赖的行为命令。这些结果对于理解跨物种实施最佳行为命令的潜在机制具有重要意义。