Suppr超能文献

甘油和水对固态溶菌酶分子动力学的影响:中子散射研究

Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study.

作者信息

Tsai A M, Neumann D A, Bell L N

机构信息

Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

Biophys J. 2000 Nov;79(5):2728-32. doi: 10.1016/S0006-3495(00)76511-8.

Abstract

Glycerol has been shown to lower the heat denaturation temperature (T(m)) of dehydrated lysozyme while elevating the T(m) of hydrated lysozyme (. J. Pharm. Sci. 84:707-712). Here, we report an in situ elastic neutron scattering study of the effect of glycerol and hydration on the internal dynamics of lysozyme powder. Anharmonic motions associated with structural relaxation processes were not detected for dehydrated lysozyme in the temperature range of 40 to 450K. Dehydrated lysozyme was found to have the highest T(m) by. Upon the addition of glycerol or water, anharmonicity was recovered above a dynamic transition temperature (T(d)), which may contribute to the reduction of T(m) values for dehydrated lysozyme in the presence of glycerol. The greatest degree of anharmonicity, as well as the lowest T(d), was observed for lysozyme solvated with water. Hydrated lysozyme was also found to have the lowest T(m) by. In the regime above T(d), larger amounts of glycerol lead to a higher rate of change in anharmonic motions as a function of temperature, rendering the material more heat labile. Below T(d), where harmonic motions dominate, the addition of glycerol resulted in a lower amplitude of motions, correlating with a stabilizing effect of glycerol on the protein.

摘要

甘油已被证明可降低脱水溶菌酶的热变性温度(T(m)),同时提高水合溶菌酶的T(m)(《药物科学杂志》84:707 - 712)。在此,我们报告一项关于甘油和水合作用对溶菌酶粉末内部动力学影响的原位弹性中子散射研究。在40至450K温度范围内,未检测到与脱水溶菌酶结构弛豫过程相关的非谐运动。发现脱水溶菌酶具有最高的T(m)。加入甘油或水后,在动态转变温度(T(d))以上恢复了非谐性,这可能有助于解释在甘油存在下脱水溶菌酶T(m)值的降低。用水溶剂化的溶菌酶观察到最大程度的非谐性以及最低的T(d)。还发现水合溶菌酶具有最低的T(m)。在T(d)以上的区域,大量甘油导致非谐运动随温度变化的速率更高,使材料更易受热破坏。在T(d)以下,谐性运动占主导,加入甘油导致运动幅度降低,这与甘油对蛋白质的稳定作用相关。

相似文献

1
Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study.
Biophys J. 2000 Nov;79(5):2728-32. doi: 10.1016/S0006-3495(00)76511-8.
2
Effect of the environment on the protein dynamical transition: a neutron scattering study.
Biophys J. 2002 Aug;83(2):1157-64. doi: 10.1016/S0006-3495(02)75239-9.
3
The inverse relationship between protein dynamics and thermal stability.
Biophys J. 2001 Oct;81(4):2339-43. doi: 10.1016/S0006-3495(01)75880-8.
4
Conditioning action of the environment on the protein dynamics studied through elastic neutron scattering.
Eur Biophys J. 2006 Sep;35(7):591-9. doi: 10.1007/s00249-006-0073-7. Epub 2006 Jun 8.
5
Influence of hydration on the dynamics of lysozyme.
Biophys J. 2006 Oct 1;91(7):2573-88. doi: 10.1529/biophysj.106.082214. Epub 2006 Jul 14.
9
Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering.
Biophys J. 1997 Nov;73(5):2726-32. doi: 10.1016/S0006-3495(97)78301-2.
10
How does glycerol enhance the bioprotective properties of trehalose? Insight from protein-solvent dynamics.
J Phys Chem B. 2014 Jul 31;118(30):8928-34. doi: 10.1021/jp500673b. Epub 2014 Jul 16.

引用本文的文献

2
Nanocrystallites Modulate Intermolecular Interactions in Cryoprotected Protein Solutions.
J Phys Chem B. 2023 Jul 13;127(27):6197-6204. doi: 10.1021/acs.jpcb.3c02413. Epub 2023 Jul 3.
3
Ab initio study of water anchored in graphene pristine and vacancy-type defects.
J Mol Model. 2023 Jun 3;29(7):198. doi: 10.1007/s00894-023-05611-7.
4
Thermal resilience of ensilicated lysozyme calorimetric and analysis.
RSC Adv. 2020 Aug 12;10(50):29789-29796. doi: 10.1039/d0ra06412b. eCollection 2020 Aug 10.
6
Pharmaceutical protein solids: Drying technology, solid-state characterization and stability.
Adv Drug Deliv Rev. 2021 May;172:211-233. doi: 10.1016/j.addr.2021.02.016. Epub 2021 Mar 8.
7
ESR, STESR, DFT, and MD Study of the Dynamical Structure of Cucurbituril[7]-Spin Probe Guest-Host Complexes.
ACS Omega. 2020 May 18;5(21):11901-11914. doi: 10.1021/acsomega.9b03772. eCollection 2020 Jun 2.
9
Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering.
Comput Struct Biotechnol J. 2016 Dec 21;15:117-130. doi: 10.1016/j.csbj.2016.12.004. eCollection 2017.
10
Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.
Biophys J. 2016 Sep 20;111(6):1180-1191. doi: 10.1016/j.bpj.2016.08.002.

本文引用的文献

1
The old problems of glass and the glass transition, and the many new twists.
Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6675-82. doi: 10.1073/pnas.92.15.6675.
2
Fast dynamics of glass-forming glycerol.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):4026-4034. doi: 10.1103/physreve.52.4026.
3
Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature.
Biophys J. 1999 Feb;76(2):1043-7. doi: 10.1016/S0006-3495(99)77269-3.
5
Heme-solvent coupling: a Mössbauer study of myoglobin in sucrose.
Biophys J. 1999 Jan;76(1 Pt 1):414-22. doi: 10.1016/S0006-3495(99)77208-5.
7
Osmolyte-driven contraction of a random coil protein.
Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9268-73. doi: 10.1073/pnas.95.16.9268.
8
Conformational dynamics and enzyme activity.
Biochimie. 1998 Jan;80(1):33-42. doi: 10.1016/s0300-9084(98)80054-0.
9
Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering.
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4970-5. doi: 10.1073/pnas.95.9.4970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验