Tag A, Hicks J, Garifullina G, Ake C, Phillips T D, Beremand M, Keller N
Departments of Plant Pathology and Microbiology, and Veterinary Anatomy and Public Health, Texas A&M University, College Station, TX 77843-2132, USA.
Mol Microbiol. 2000 Nov;38(3):658-65. doi: 10.1046/j.1365-2958.2000.02166.x.
Filamentous fungi elaborate a complex array of secondary metabolites, including antibiotics and mycotoxins. As many of these compounds pose significant economic and health concerns, elucidation of the underlying cellular mechanisms that control their production is essential. Previous work revealed that synthesis of the carcinogenic mycotoxins sterigmatocystin (ST) and aflatoxin (AF) in Aspergillus species is negatively controlled by FadA, the alpha-subunit of a heterotrimeric G-protein. In sharp contrast, we show here that the dominant activating fadA allele, fadAG42R, stimulates transcription of a gene from the A. nidulans penicillin (PN) gene cluster and elevates penicillin production. Thus, FadA has opposite roles in regulating the biosynthesis of a potent antibiotic (PN) and a lethal mycotoxin (ST) in A. nidulans. Furthermore, expression of fadAG42R in Fusarium sporotrichioides increases trichothecene (TR) mycotoxin production and alters TR gene expression. Our findings reveal that a G-protein defines an important control point for differential expression of fungal secondary metabolites within and across fungal genera. These data provide critical evidence suggesting that targeting G-protein signal transduction pathways as a means of controlling or preventing the production of a single mycotoxin could have serious undesirable consequences with regard to the production of other secondary metabolites.
丝状真菌能产生一系列复杂的次级代谢产物,包括抗生素和霉菌毒素。由于其中许多化合物会引发重大的经济和健康问题,因此阐明控制其产生的潜在细胞机制至关重要。先前的研究表明,曲霉属中致癌霉菌毒素柄曲霉素(ST)和黄曲霉毒素(AF)的合成受到异源三聚体G蛋白的α亚基FadA的负调控。与之形成鲜明对比的是,我们在此表明,显性激活的fadA等位基因fadAG42R可刺激构巢曲霉青霉素(PN)基因簇中一个基因的转录,并提高青霉素产量。因此,FadA在调节构巢曲霉中强效抗生素(PN)和致命霉菌毒素(ST)的生物合成中具有相反的作用。此外,fadAG42R在拟枝孢镰刀菌中的表达会增加单端孢霉烯族毒素(TR)霉菌毒素的产生,并改变TR基因的表达。我们的研究结果表明,G蛋白是真菌属内和属间真菌次级代谢产物差异表达的一个重要控制点。这些数据提供了关键证据,表明将G蛋白信号转导途径作为控制或预防单一霉菌毒素产生的手段,可能会对其他次级代谢产物的产生带来严重的不良后果。