Suppr超能文献

Characterization of enzymatic processes by rapid mix-quench mass spectrometry: the case of dTDP-glucose 4,6-dehydratase.

作者信息

Gross J W, Hegeman A D, Vestling M M, Frey P A

机构信息

Department of Biochemistry, College of Agricultural Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.

出版信息

Biochemistry. 2000 Nov 14;39(45):13633-40. doi: 10.1021/bi001963d.

Abstract

The single-turnover kinetic mechanism for the reaction catalyzed by dTDP-glucose 4,6-dehydratase (4,6-dehydratase) has been determined by rapid mix-chemical quench mass spectrometry. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to analyze quenched samples. The results were compatible with the postulated reaction mechanism, in which NAD(+) initially oxidizes glucosyl C4 of dTDP-glucose to NADH and dTDP-4-ketoglucose. Next, water is eliminated between C5 and C6 of dTDP-4-ketoglucose to form dTDP-4-ketoglucose-5,6-ene. Hydride transfer from NADH to C6 of dTDP-4-ketoglucose-5,6-ene regenerates NAD(+) and produces the product dTDP-4-keto-6-deoxyglucose. The single-turnover reaction was quenched at various times on the millisecond scale with a mixture of 6 M guanidine hydrochloride and sodium borohydride, which stopped the reaction and reductively stabilized the intermediates and product. Quantitative MALDI-TOF MS analysis of the quenched samples allowed the simultaneous observation of the disappearance of substrate, transient appearance and disappearance of dTDP-hexopyranose-5,6-ene (the reductively stabilized dTDP-4-ketoglucose-5,6-ene), and the appearance of product. Kinetic modeling of the process allowed rate constants for most of the steps of the reaction of dTDP-glucose-d(7) to be evaluated. The transient formation and reaction of dTDP-4-ketoglucose could not be observed, because this intermediate did not accumulate to detectable concentrations.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验