Pfeiffer Martin, Johansson Catrine, Krojer Tobias, Kavanagh Kathryn L, Oppermann Udo, Nidetzky Bernd
Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom.
ACS Catal. 2019 Apr 5;9(4):2962-2968. doi: 10.1021/acscatal.9b00064. Epub 2019 Mar 1.
Biosynthesis of 6-deoxy sugars, including l-fucose, involves a mechanistically complex, enzymatic 4,6-dehydration of hexose nucleotide precursors as the first committed step. Here, we determined pre- and postcatalytic complex structures of the human GDP-mannose 4,6-dehydratase at atomic resolution. These structures together with results of molecular dynamics simulation and biochemical characterization of wildtype and mutant enzymes reveal elusive mechanistic details of water elimination from GDP-mannose C5″ and C6″, coupled to NADP-mediated hydride transfer from C4″ to C6″. We show that concerted acid-base catalysis from only two active-site groups, Tyr and Glu, promotes a 1,4-elimination from an enol (not an enolate) intermediate. We also show that the overall multistep catalytic reaction involves the fewest position changes of enzyme and substrate groups and that it proceeds under conserved exploitation of the basic (minimal) catalytic machinery of short-chain dehydrogenase/reductases.
包括L-岩藻糖在内的6-脱氧糖的生物合成,涉及到一个机制复杂的酶促反应,即己糖核苷酸前体的4,6-脱水反应,这是第一个关键步骤。在此,我们以原子分辨率确定了人GDP-甘露糖4,6-脱水酶的催化前和催化后复合物结构。这些结构,连同分子动力学模拟结果以及野生型和突变型酶的生化特征,揭示了GDP-甘露糖C5″和C6″上的水消除的难以捉摸的机制细节,这与NADP介导的氢化物从C4″转移到C6″相耦合。我们表明,仅来自两个活性位点基团Tyr和Glu的协同酸碱催化促进了烯醇(而非烯醇负离子)中间体的1,4-消除反应。我们还表明,整个多步催化反应涉及酶和底物基团的最少位置变化,并且它是在对短链脱氢酶/还原酶的基本(最小)催化机制的保守利用下进行的。