Sweeney L
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, USA.
Proc AMIA Annu Fall Symp. 1996:333-7.
We define a new approach to locating and replacing personally-identifying information in medical records that extends beyond straight search-and-replace procedures, and we provide techniques for minimizing risk to patient confidentiality. The straightforward approach of global search and replace properly located no more than 30-60% of all personally-identifying information that appeared explicitly in our sample database. On the other hand, our Scrub system found 99-100% of these references. Scrub uses detection algorithms that employ templates and specialized knowledge of what constitutes a name, address, phone number and so forth.
我们定义了一种在医疗记录中定位和替换个人身份识别信息的新方法,该方法超越了直接的搜索和替换程序,并且我们提供了将患者隐私风险降至最低的技术。直接的全局搜索和替换方法在我们的示例数据库中明确出现的所有个人身份识别信息中,正确定位的不超过30%-60%。另一方面,我们的Scrub系统找到了这些引用的99%-100%。Scrub使用检测算法,这些算法采用模板以及关于什么构成姓名、地址、电话号码等的专业知识。