Suppr超能文献

K近邻算法在乳腺癌诊断问题上的应用。

Application of K-nearest neighbors algorithm on breast cancer diagnosis problem.

作者信息

Sarkar M, Leong T Y

机构信息

Medical Computing Laboratory, Department of Computer Science, School of Computing, National University of Singapore, Lower Kent Ridge Road, Singapore: 119260.

出版信息

Proc AMIA Symp. 2000:759-63.

Abstract

This paper addresses the Breast Cancer diagnosis problem as a pattern classification problem. Specifically, this problem is studied using the Wisconsin-Madison Breast Cancer data set. The K-nearest neighbors algorithm is employed as the classifier. Conceptually and implementation-wise, the K-nearest neighbors algorithm is simpler than the other techniques that have been applied to this problem. In addition, the Knearest neighbors algorithm produces the overall classification result 1.17% better than the best result known for this problem.

摘要

本文将乳腺癌诊断问题视为一个模式分类问题。具体而言,使用威斯康星大学麦迪逊分校乳腺癌数据集对该问题进行研究。采用K近邻算法作为分类器。从概念和实现角度来看,K近邻算法比应用于该问题的其他技术更简单。此外,K近邻算法产生的总体分类结果比该问题已知的最佳结果高出1.17%。

相似文献

8
Evolving edited k-nearest neighbor classifiers.
Int J Neural Syst. 2008 Dec;18(6):459-67. doi: 10.1142/S0129065708001725.

引用本文的文献

1
Random k conditional nearest neighbor for high-dimensional data.用于高维数据的随机k条件最近邻
PeerJ Comput Sci. 2025 Jan 24;11:e2497. doi: 10.7717/peerj-cs.2497. eCollection 2025.

本文引用的文献

1
A fuzzy-genetic approach to breast cancer diagnosis.一种用于乳腺癌诊断的模糊遗传方法。
Artif Intell Med. 1999 Oct;17(2):131-55. doi: 10.1016/s0933-3657(99)00019-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验