Suppr超能文献

Surrogate data test for nonlinearity including nonmonotonic transforms.

作者信息

Kugiumtzis D

机构信息

Department of Statistics, University of Glasgow, Glasgow G12 8QW, United Kingdom.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt A):R25-8. doi: 10.1103/physreve.62.r25.

Abstract

It is shown that monotonicity of the transform in the surrogate data test, which diminishes the applicability of the test, is not necessary and concerns only the prominent algorithm of amplitude adjusted Fourier transform (AAFT) for surrogate data generation. The failure of AAFT under nonmonotonicity is explained and a modified algorithm appropriate for nonmonotonic transforms, called corrected AAFT (CAAFT), is proposed. The superiority of CAAFT over AAFT is demonstrated with simulated and real data and compared also to the iterated AAFT algorithm.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验