Suppr超能文献

在测试非线性之前先测试你的替代数据。

Test your surrogate data before you test for nonlinearity.

作者信息

Kugiumtzis D

机构信息

Max-Planck-Institute for Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Sep;60(3):2808-16. doi: 10.1103/physreve.60.2808.

Abstract

The schemes for the generation of surrogate data in order to test the null hypothesis of linear stochastic process undergoing nonlinear static transform are investigated as to their consistency in representing the null hypothesis. In particular, we pinpoint some important caveats of the prominent algorithm of amplitude adjusted Fourier transform surrogates (AAFT) and compare it to the iterated AAFT, which is more consistent in representing the null hypothesis. It turns out that in many applications with real data the inferences of nonlinearity after marginal rejection of the null hypothesis were premature and have to be reinvestigated taking into account the inaccuracies in the AAFT algorithm, mainly concerning the mismatching of the linear correlations. In order to deal with such inaccuracies, we propose the use of linear together with nonlinear polynomials as discriminating statistics. The application of this setup to some well-known real data sets cautions against the use of the AAFT algorithm.

摘要

为了检验经历非线性静态变换的线性随机过程的零假设而生成替代数据的方案,就其在表示零假设方面的一致性进行了研究。特别是,我们指出了幅度调整傅里叶变换替代数据(AAFT)这一著名算法的一些重要注意事项,并将其与迭代AAFT进行比较,后者在表示零假设方面更具一致性。结果表明,在许多实际数据应用中,在零假设被边际拒绝后对非线性的推断为时过早,必须考虑到AAFT算法中的不准确性,主要是线性相关性的不匹配,重新进行研究。为了处理这种不准确性,我们建议使用线性和非线性多项式作为判别统计量。将此设置应用于一些著名的实际数据集,警示人们不要使用AAFT算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验