Reynolds Jocelyn, Yoon Jeong-Yeol
Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
Mikrochim Acta. 2025 May 5;192(6):334. doi: 10.1007/s00604-025-07159-0.
Most microbiota determination (skin, gut, soil, etc.) are currently conducted in a laboratory using expensive equipment and lengthy procedures, including culture-dependent methods, nucleic acid amplifications (including quantitative PCR), DNA microarray, immunoassays, 16S rRNA sequencing, shotgun metagenomics, and sophisticated mass spectrometric methods. In situ and rapid analysis methods are desirable for fast turnaround time and low assay cost. Fluorescence identification of bacteria and their mixtures is emerging to meet this demand, thanks to the recent development in various machine learning methods. High-dimensional spectroscopic or microscopic imaging data can be obtained to identify the bacterial makeup and its implications for human health and the environment. For example, we can classify healthy versus non-healthy skin microbiome, inflammatory versus non-inflammatory gut microbiome, degraded versus non-degraded soil microbiome, etc. This tutorial summarizes the various machine-learning algorithms used in bacteria identification and microbiota determinations. It also summarizes the various fluorescence spectroscopic methods used to identify bacteria and their mixtures, including fluorescence lifetime spectroscopy, fluorescence resonance energy transfer (FRET), and synchronous fluorescence (SF) spectroscopy. Finally, various fluorescence microscopic imaging methods were summarized that have been used to identify bacteria and their mixtures, including epi-fluorescence microscopy, confocal microscopy, two-photon/multi-photon microscopy, and super-resolution imaging methods (STED, SIM, PALM, and STORM). Finally, it discusses how these methods can be applied to microbiota determinations, what can be demonstrated in the future, opportunities and challenges, and future directions.
目前,大多数微生物群测定(皮肤、肠道、土壤等)是在实验室中使用昂贵的设备并通过冗长的程序进行的,包括依赖培养的方法、核酸扩增(包括定量PCR)、DNA微阵列、免疫测定、16S rRNA测序、鸟枪法宏基因组学以及复杂的质谱方法。对于快速周转时间和低成本检测而言,原位和快速分析方法是可取的。由于各种机器学习方法的最新发展,细菌及其混合物的荧光鉴定正在兴起以满足这一需求。可以获取高维光谱或显微成像数据,以识别细菌组成及其对人类健康和环境的影响。例如,我们可以对健康与非健康的皮肤微生物群、炎症与非炎症的肠道微生物群、退化与未退化的土壤微生物群等进行分类。本教程总结了用于细菌鉴定和微生物群测定的各种机器学习算法。它还总结了用于识别细菌及其混合物的各种荧光光谱方法,包括荧光寿命光谱、荧光共振能量转移(FRET)和同步荧光(SF)光谱。最后,总结了用于识别细菌及其混合物的各种荧光显微成像方法,包括落射荧光显微镜、共聚焦显微镜、双光子/多光子显微镜以及超分辨率成像方法(受激发射损耗显微镜、结构光照明显微镜、光激活定位显微镜和随机光学重建显微镜)。最后,它讨论了这些方法如何应用于微生物群测定、未来可以证明什么、机遇和挑战以及未来方向。