Fricker D, Miles R
Laboratoire de Neurobiologie Cellulaire, INSERM U261, Institut Pasteur, Paris, France.
Neuron. 2000 Nov;28(2):559-69. doi: 10.1016/s0896-6273(00)00133-1.
The temporal precision with which EPSPs initiate action potentials in postsynaptic cells determines how activity spreads in neuronal networks. We found that small EPSPs evoked from just subthreshold potentials initiated firing with short latencies in most CA1 hippocampal inhibitory cells, while action potential timing in pyramidal cells was more variable due to plateau potentials that amplified and prolonged EPSPs. Action potential timing apparently depends on the balance of subthreshold intrinsic currents. In interneurons, outward currents dominate responses to somatically injected EPSP waveforms, while inward currents are larger than outward currents close to threshold in pyramidal cells. Suppressing outward potassium currents increases the variability in latency of synaptically induced firing in interneurons. These differences in precision of EPSP-spike coupling in inhibitory and pyramidal cells will enhance inhibitory control of the spread of excitation in the hippocampus.
兴奋性突触后电位(EPSP)在突触后细胞中引发动作电位的时间精度决定了神经元网络中活动的传播方式。我们发现,在大多数CA1海马抑制性细胞中,仅从阈下电位诱发的小EPSP能以短潜伏期引发放电,而锥体细胞中的动作电位时间则因放大和延长EPSP的平台电位而更具变化性。动作电位时间显然取决于阈下内在电流的平衡。在中间神经元中,外向电流主导对体细胞注入的EPSP波形的反应,而在锥体细胞中,接近阈值时内向电流大于外向电流。抑制外向钾电流会增加中间神经元中突触诱导放电潜伏期的变异性。抑制性和锥体细胞中EPSP-峰电位耦合精度的这些差异将增强海马体中兴奋传播的抑制控制。