Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.
Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary.
PLoS Biol. 2023 Feb 6;21(2):e3002001. doi: 10.1371/journal.pbio.3002001. eCollection 2023 Feb.
Accumulating evidence indicates that there are substantial species differences in the properties of mammalian neurons, yet theories on circuit activity and information processing in the human brain are based heavily on results obtained from rodents and other experimental animals. This knowledge gap may be particularly important for understanding the neocortex, the brain area responsible for the most complex neuronal operations and showing the greatest evolutionary divergence. Here, we examined differences in the electrophysiological properties of human and mouse fast-spiking GABAergic basket cells, among the most abundant inhibitory interneurons in cortex. Analyses of membrane potential responses to current input, pharmacologically isolated somatic leak currents, isolated soma outside-out patch recordings, and immunohistochemical staining revealed that human neocortical basket cells abundantly express hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms HCN1 and HCN2 at the cell soma membrane, whereas these channels are sparse at the rodent basket cell soma membrane. Antagonist experiments showed that HCN channels in human neurons contribute to the resting membrane potential and cell excitability at the cell soma, accelerate somatic membrane potential kinetics, and shorten the lag between excitatory postsynaptic potentials and action potential generation. These effects are important because the soma of human fast-spiking neurons without HCN channels exhibit low persistent ion leak and slow membrane potential kinetics, compared with mouse fast-spiking neurons. HCN channels speed up human cell membrane potential kinetics and help attain an input-output rate close to that of rodent cells. Computational modeling demonstrated that HCN channel activity at the human fast-spiking cell soma membrane is sufficient to accelerate the input-output function as observed in cell recordings. Thus, human and mouse fast-spiking neurons exhibit functionally significant differences in ion channel composition at the cell soma membrane to set the speed and fidelity of their input-output function. These HCN channels ensure fast electrical reactivity of fast-spiking cells in human neocortex.
越来越多的证据表明,哺乳动物神经元的特性在物种间存在很大差异,但关于人类大脑回路活动和信息处理的理论很大程度上是基于啮齿动物和其他实验动物的结果。这种知识差距对于理解大脑新皮层可能尤为重要,因为新皮层是负责最复杂神经元活动并表现出最大进化差异的脑区。在这里,我们研究了在大脑中最丰富的抑制性中间神经元之一——快速放电 GABA 能篮状细胞中,人类和小鼠之间的电生理特性差异。对电流输入引起的膜电位响应、药理学分离的体膜泄漏电流、分离的体细胞外膜片钳记录以及免疫组织化学染色的分析表明,人类新皮层篮状细胞在细胞膜上大量表达超极化激活环核苷酸门控阳离子(HCN)通道同工型 HCN1 和 HCN2,而这些通道在啮齿动物篮状细胞细胞膜上稀疏表达。拮抗剂实验表明,人类神经元中的 HCN 通道有助于在细胞膜上形成静息膜电位和细胞兴奋性,加速体细胞膜电位动力学,并缩短兴奋性突触后电位与动作电位产生之间的滞后。这些效应很重要,因为与小鼠快速放电神经元相比,缺乏 HCN 通道的人类快速放电神经元的胞体表现出低持续离子泄漏和缓慢的膜电位动力学。HCN 通道可加快人类细胞膜电位动力学,并有助于达到接近啮齿动物细胞的输入-输出率。计算模型表明,在人类快速放电细胞胞体膜上的 HCN 通道活性足以加速细胞记录中观察到的输入-输出功能。因此,人类和小鼠快速放电神经元在细胞膜上的离子通道组成上表现出功能上显著的差异,以确定其输入-输出功能的速度和保真度。这些 HCN 通道确保了人类新皮层快速放电细胞的快速电反应性。