Craciun A, Jacobs M, Vauterin M
Laboratorium voor Plantengenetica, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640, Sint Genesius Rode, Belgium.
FEBS Lett. 2000 Dec 29;487(2):234-8. doi: 10.1016/s0014-5793(00)02303-6.
In plants, the amino acids lysine, threonine, methionine and isoleucine have L-aspartate-beta-semialdehyde (ASA) as a common precursor in their biosynthesis pathways. How this ASA precursor is dispersed among the different pathways remains vague knowledge. The proportional balances of free and/or protein-bound lysine, threonine, isoleucine and methionine are a function of protein synthesis, secondary metabolism and plant physiology. Some control points determining the flux through the distinct pathways are known, but an adequate explanation of how the competing pathways share ASA in a fine-tuned amino acid biosynthesis network is yet not available. In this article we discuss the influence of lysine biosynthesis on the adjacent pathways of threonine and methionine. We report the finding of an Arabidopsis thaliana dihydrodipicolinate synthase T-DNA insertion mutant displaying lower lysine synthesis, and, as a result of this, a strongly enhanced synthesis of threonine. Consequences of these cross-pathway regulations are discussed.
在植物中,氨基酸赖氨酸、苏氨酸、蛋氨酸和异亮氨酸在其生物合成途径中具有共同的前体L-天冬氨酸-β-半醛(ASA)。这种ASA前体如何在不同途径中分配仍不清楚。游离和/或与蛋白质结合的赖氨酸、苏氨酸、异亮氨酸和蛋氨酸的比例平衡是蛋白质合成、次生代谢和植物生理学的函数。一些决定通过不同途径通量的控制点是已知的,但对于竞争途径如何在精细调节的氨基酸生物合成网络中共享ASA,尚未有充分的解释。在本文中,我们讨论了赖氨酸生物合成对苏氨酸和蛋氨酸相邻途径的影响。我们报道了一个拟南芥二氢吡啶二羧酸合酶T-DNA插入突变体的发现,该突变体显示赖氨酸合成较低,结果导致苏氨酸合成强烈增强。讨论了这些跨途径调控的后果。