Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
J Exp Bot. 2018 Nov 26;69(22):5489-5506. doi: 10.1093/jxb/ery325.
Lysine (Lys) connects the mitochondrial electron transport chain to amino acid catabolism and the tricarboxylic acid cycle. However, our understanding of how a deficiency in Lys biosynthesis impacts plant metabolism and growth remains limited. Here, we used a previously characterized Arabidopsis mutant (dapat) with reduced activity of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase to investigate the physiological and metabolic impacts of impaired Lys biosynthesis. Despite displaying similar stomatal conductance and internal CO2 concentration, we observed reduced photosynthesis and growth in the dapat mutant. Surprisingly, whilst we did not find differences in dark respiration between genotypes, a lower storage and consumption of starch and sugars was observed in dapat plants. We found higher protein turnover but no differences in total amino acids during a diurnal cycle in dapat plants. Transcriptional and two-dimensional (isoelectric focalization/SDS-PAGE) proteome analyses revealed alterations in the abundance of several transcripts and proteins associated with photosynthesis and photorespiration coupled with a high glycine/serine ratio and increased levels of stress-responsive amino acids. Taken together, our findings demonstrate that biochemical alterations rather than stomatal limitations are responsible for the decreased photosynthesis and growth of the dapat mutant, which we hypothesize mimics stress conditions associated with impairments in the Lys biosynthesis pathway.
赖氨酸(Lys)将线粒体电子传递链与氨基酸分解代谢和三羧酸循环连接起来。然而,我们对赖氨酸生物合成缺陷如何影响植物代谢和生长的理解仍然有限。在这里,我们使用了一种以前表征的拟南芥突变体(dapat),该突变体中赖氨酸生物合成酶 L,L-二氨基庚二酸氨基转移酶的活性降低,以研究赖氨酸生物合成受损对生理和代谢的影响。尽管突变体的气孔导度和内部 CO2 浓度相似,但我们观察到突变体的光合作用和生长受到抑制。令人惊讶的是,尽管我们没有发现不同基因型之间的暗呼吸差异,但突变体植物中淀粉和糖的储存和消耗减少。我们发现突变体植物在昼夜周期中具有更高的蛋白质周转率,但总氨基酸没有差异。转录组和二维(等电聚焦/SDS-PAGE)蛋白质组分析显示,与光合作用和光呼吸相关的几个转录本和蛋白质的丰度发生了改变,同时伴随着甘氨酸/丝氨酸比的增加和应激响应氨基酸水平的升高。总之,我们的研究结果表明,生物化学变化而不是气孔限制是导致突变体光合作用和生长下降的原因,我们假设这模拟了与赖氨酸生物合成途径缺陷相关的应激条件。