D'Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G
Department of Molecular/Cellular Physiology and Instituto Nazionale per la Fisica della Materia, University of Pavia, I-27100 Pavia, Italy.
J Neurosci. 2001 Feb 1;21(3):759-70. doi: 10.1523/JNEUROSCI.21-03-00759.2001.
Neurons process information in a highly nonlinear manner, generating oscillations, bursting, and resonance, enhancing responsiveness at preferential frequencies. It has been proposed that slow repolarizing currents could be responsible for both oscillation/burst termination and for high-pass filtering that causes resonance (Hutcheon and Yarom, 2000). However, different mechanisms, including electrotonic effects (Mainen and Sejinowski, 1996), the expression of resurgent currents (Raman and Bean, 1997), and network feedback, may also be important. In this study we report theta-frequency (3-12 Hz) bursting and resonance in rat cerebellar granule cells and show that these neurons express a previously unidentified slow repolarizing K(+) current (I(K-slow)). Our experimental and modeling results indicate that I(K-slow) was necessary for both bursting and resonance. A persistent (and potentially a resurgent) Na(+) current exerted complex amplifying actions on bursting and resonance, whereas electrotonic effects were excluded by the compact structure of the granule cell. Theta-frequency bursting and resonance in granule cells may play an important role in determining synchronization, rhythmicity, and learning in the cerebellum.
神经元以高度非线性的方式处理信息,产生振荡、爆发和共振,增强在特定频率下的反应性。有人提出,缓慢的复极化电流可能是振荡/爆发终止以及导致共振的高通滤波的原因(哈钦和亚罗姆,2000年)。然而,包括电紧张效应(梅嫩和塞吉诺夫斯基,1996年)、复苏电流的表达(拉曼和比恩,1997年)以及网络反馈在内的不同机制可能也很重要。在本研究中,我们报告了大鼠小脑颗粒细胞中的θ频率(3 - 12赫兹)爆发和共振,并表明这些神经元表达了一种先前未被识别的缓慢复极化钾电流(I(K-slow))。我们的实验和建模结果表明,I(K-slow)对于爆发和共振都是必需的。一种持续性(可能还有复苏性)钠电流对爆发和共振发挥了复杂的放大作用,而颗粒细胞紧凑的结构排除了电紧张效应。颗粒细胞中的θ频率爆发和共振可能在确定小脑的同步性、节律性和学习方面发挥重要作用。