Lorenzi Roberta Maria, Palesi Fulvia, Casellato Claudia, Gandini Wheeler-Kingshott Claudia A M, D'Angelo Egidio
Department of Brain & Behavioral Sciences, University of Pavia, Pavia, Italy.
NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
NPJ Syst Biol Appl. 2025 Jun 24;11(1):66. doi: 10.1038/s41540-025-00543-9.
Brain dynamics can be simulated using virtual brain models, in which a standard mathematical representation of oscillatory activity is usually adopted for all cortical and subcortical regions. However, some brain regions have specific microcircuit properties that are not recapitulated by standard oscillators. Moreover, magnetic resonance imaging (MRI)-based connectomes may not be able to capture local circuit connectivity. Region-specific models incorporating computational properties of local neurons and microcircuits have recently been generated using the mean field (MF) approach and proposed to impact large-scale brain dynamics. Here, we have used a MF of the cerebellar cortex to generate a mesoscopic model of the whole cerebellum featuring a prewired connectivity of multiple cerebellar cortical areas with deep cerebellar nuclei. This multi-node cerebellar MF was then used to substitute the corresponding standard oscillators and build up a cerebellar mean field virtual brain (cMF-TVB) for a group of healthy human subjects. Simulations revealed that electrophysiological and fMRI signals generated by the cMF-TVB significantly improved the fitness of local and global dynamics with respect to a homogeneous model made solely of standard oscillators. The cMF-TVB reproduced the rhythmic oscillations and coherence typical of the cerebellar circuit and allowed to correlate electrophysiological and functional MRI signals to specific neuronal populations. In aggregate, region-specific models based on MF and pre-wired circuit connectivity can significantly improve virtual brain simulations, fostering the generation of effective brain digital twins that could be used for physiological studies and clinical applications.
脑动力学可以使用虚拟脑模型进行模拟,在虚拟脑模型中,通常对所有皮质和皮质下区域采用振荡活动的标准数学表示。然而,一些脑区具有特定的微电路特性,这些特性无法通过标准振荡器再现。此外,基于磁共振成像(MRI)的连接组可能无法捕捉局部电路连接性。最近,利用平均场(MF)方法生成了包含局部神经元和微电路计算特性的区域特异性模型,并提出这些模型会影响大规模脑动力学。在这里,我们使用小脑皮质的平均场来生成整个小脑的介观模型,该模型具有多个小脑皮质区域与小脑深部核团的预连线连接。然后,这个多节点小脑平均场被用来替代相应的标准振荡器,并为一组健康人类受试者构建一个小脑平均场虚拟脑(cMF-TVB)。模拟结果表明,与仅由标准振荡器组成的均匀模型相比,cMF-TVB产生的电生理和功能磁共振成像信号显著提高了局部和全局动力学的拟合度。cMF-TVB再现了小脑回路典型的节律性振荡和相干性,并能够将电生理和功能磁共振成像信号与特定神经元群体相关联。总的来说,基于平均场和预连线电路连接性的区域特异性模型可以显著改善虚拟脑模拟,促进生成可用于生理学研究和临床应用的有效脑数字孪生体。