Suppr超能文献

磷脂酰基链堆积的焓和表观可及水的非极性表面积。

The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids.

作者信息

Heerklotz H, Epand R M

机构信息

Department of Biochemistry, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada.

出版信息

Biophys J. 2001 Jan;80(1):271-9. doi: 10.1016/S0006-3495(01)76012-2.

Abstract

The energetics of phospholipid aggregation depend on the apparent water-accessible apolar surface area (ASAap), ordering effects of the chains, and headgroup interactions. We quantify the enthalpy and entropy of these interactions separately. For that purpose, the thermodynamics of micelle formation of lysophosphatidylcholines (LPCs, chains C10, C12, C14, and C16) and diacylphosphatidylcholines (DAPCs, chains C5, C6) and C7) are studied using isothermal titration calorimetry. The critical micelle concentration (CMC) values are 90, 15, and 1.9 mM (C5-C7-DAPC) and 6.8, 0.71, 0.045, and 0.005 mM (LPCs). The group contributions per methylene of DeltaDeltaG(0) = -3.1 kJ/mol and DeltaDeltaC(P) = -57 J/(mol. K) for LPCs agree with literature data on hydrocarbons and amphiphiles. An apparent deviation of DAPCs (-2.5 kJ/mol, 45 J/(mol. K)) is due to an intramolecular interaction between the two chains, burying 20% of the surface. The chain/chain interaction enthalpies in a micelle core are by approximately -2 kJ/(mol) per methylene group more favorable than in bulk hydrocarbons. We conclude that the impact of the chain conformation and packing on the interaction enthalpy is very pronounced. It serves to explain a variety of effects reported on membrane binding. Interactions within the water-accessible region show considerable DeltaH, but almost no DeltaG(0). The heat capacity changes suggest about three methylene groups (ASAap approximately 100 A2) per LPC remain exposed to water in a micelle (DAPC: 2 CH2/70 A2).

摘要

磷脂聚集的能量学取决于表观水可及的非极性表面积(ASAap)、链的有序效应以及头基相互作用。我们分别对这些相互作用的焓和熵进行了量化。为此,使用等温滴定量热法研究了溶血磷脂酰胆碱(LPCs,链长为C10、C12、C14和C16)以及二酰基磷脂酰胆碱(DAPCs,链长为C5、C6和C7)形成胶束的热力学。临界胶束浓度(CMC)值分别为90、15和1.9 mM(C5 - C7 - DAPC)以及6.8、0.71、0.045和0.005 mM(LPCs)。LPCs的每亚甲基的基团贡献ΔΔG(0) = -3.1 kJ/mol和ΔΔC(P) = -57 J/(mol·K)与关于烃类和两亲分子的文献数据一致。DAPCs出现明显偏差(-2.5 kJ/mol,45 J/(mol·K))是由于两条链之间的分子内相互作用,掩埋了20%的表面。胶束核心中的链/链相互作用焓比本体烃类中每个亚甲基基团大约更有利-2 kJ/(mol)。我们得出结论,链构象和堆积对相互作用焓的影响非常显著。这有助于解释关于膜结合所报道的各种效应。水可及区域内的相互作用显示出相当大的ΔH,但几乎没有ΔG(0)。热容变化表明,在胶束中每个LPC约有三个亚甲基基团(ASAap约为100 Å2)仍暴露于水中(DAPC:2个CH2/70 Å2)。

相似文献

2
Calorimetric Study of Micelle Formation of Alkylammonium Chlorides in Water.
J Oleo Sci. 2018;67(11):1417-1424. doi: 10.5650/jos.ess18007.
3
Calorimetry of apolipoprotein-A1 binding to phosphatidylcholine-triolein-cholesterol emulsions.
Biophys J. 1996 Jan;70(1):330-8. doi: 10.1016/S0006-3495(96)79574-7.
5
Calorimetric study of micelle formation of sodium alkyl sulfates in water.
J Oleo Sci. 2013;62(12):1041-7. doi: 10.5650/jos.62.1041.
6
Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
Biophys J. 2002 Sep;83(3):1547-56. doi: 10.1016/S0006-3495(02)73924-6.
10
Detergent-phospholipid mixed micelles with a crystalline phospholipid core.
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8938-43. doi: 10.1073/pnas.161160998.

引用本文的文献

1
Vesicle budding caused by lysolipid-induced asymmetry stress.
Biophys J. 2023 Oct 17;122(20):4011-4022. doi: 10.1016/j.bpj.2023.08.023. Epub 2023 Aug 29.
2
Water as a Link between Membrane and Colloidal Theories for Cells.
Molecules. 2022 Aug 5;27(15):4994. doi: 10.3390/molecules27154994.
4
A Monte Carlo study of giant vesicle morphologies in nonequilibrium environments.
Biophys J. 2021 Oct 19;120(20):4418-4428. doi: 10.1016/j.bpj.2021.09.005. Epub 2021 Sep 8.
5
6
Equation of State for Phospholipid Self-Assembly.
Biophys J. 2016 Jan 5;110(1):188-96. doi: 10.1016/j.bpj.2015.11.012.
7
Probing substrate interactions in the active tunnel of a catalytically deficient cellobiohydrolase (Cel7).
J Biol Chem. 2015 Jan 23;290(4):2444-54. doi: 10.1074/jbc.M114.624163. Epub 2014 Dec 4.
8
Short-chain phosphoinositide partitioning into plasma membrane models.
Biophys J. 2013 Dec 3;105(11):2485-94. doi: 10.1016/j.bpj.2013.09.035.
9
Thermodynamics of phospholipid self-assembly.
Biophys J. 2012 Mar 7;102(5):1079-87. doi: 10.1016/j.bpj.2012.01.049. Epub 2012 Mar 6.
10
The thermodynamics of simple biomembrane mimetic systems.
J Pharm Bioallied Sci. 2011 Jan;3(1):15-38. doi: 10.4103/0975-7406.76462.

本文引用的文献

1
An equation of state describing hydrophobic interactions.
Proc Natl Acad Sci U S A. 1976 Sep;73(9):2955-8. doi: 10.1073/pnas.73.9.2955.
2
Titration calorimetry of surfactant-membrane partitioning and membrane solubilization.
Biochim Biophys Acta. 2000 Nov 23;1508(1-2):69-85. doi: 10.1016/s0304-4157(00)00009-5.
3
Structure of lipid bilayers.
Biochim Biophys Acta. 2000 Nov 10;1469(3):159-95. doi: 10.1016/s0304-4157(00)00016-2.
4
Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles.
Biophys Chem. 2000 Jul 15;85(2-3):187-98. doi: 10.1016/s0301-4622(00)00120-4.
6
Hydrophobic mismatch between proteins and lipids in membranes.
Biochim Biophys Acta. 1998 Nov 10;1376(3):401-15. doi: 10.1016/s0304-4157(98)00017-3.
7
Prediction of binding energetics from structure using empirical parameterization.
Methods Enzymol. 1998;295:294-315. doi: 10.1016/s0076-6879(98)95045-5.
8
Titration calorimetry of lipid-peptide interactions.
Biochim Biophys Acta. 1997 Mar 14;1331(1):103-16. doi: 10.1016/s0304-4157(97)00002-6.
9
Heat changes in lipid membranes under sudden osmotic stress.
Biochemistry. 1997 Mar 11;36(10):2853-9. doi: 10.1021/bi961839n.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验