Suppr超能文献

基于计算机断层扫描的荧光显微镜光谱成像。

Computed tomography-based spectral imaging for fluorescence microscopy.

作者信息

Ford B K, Volin C E, Murphy S M, Lynch R M, Descour M R

机构信息

Optical Sciences Center, University of Arizona, Tucson, Arizona 85724, USA.

出版信息

Biophys J. 2001 Feb;80(2):986-93. doi: 10.1016/S0006-3495(01)76077-8.

Abstract

The computed tomography imaging spectrometer (CTIS) is a non-scanning instrument capable of simultaneously acquiring full spectral information (450-750 nm) from every position element within its field of view (75 microm x 75 microm). The current spatial and spectral sampling intervals of the spectrometer are 1.0 microm and 10 nm, respectively. This level of resolution is adequate to resolve signal responses from multiple fluorescence probes located within individual cells or different locations within the same cell. Spectral imaging results are presented from the CTIS combined with a commercial inverted fluorescence microscope. Results demonstrate the capability of the CTIS to monitor the spatiotemporal evolution of pH in rat insulinoma cells loaded with SNARF-1. The ability to analyze full spectral information for two-dimensional (x, y) images allows precise evaluation of heterogeneous physiological responses within cell populations. Due to low signal levels, integration times up to 2 s were required. However, reasonable modifications to the instrument design will provide higher system transmission efficiency with increased temporal and spatial resolution. Specifically, a custom optical design including the use of a larger format detector array is under development for a second-generation system.

摘要

计算机断层扫描成像光谱仪(CTIS)是一种非扫描仪器,能够同时从其视场(75微米×75微米)内的每个位置元素获取全光谱信息(450 - 750纳米)。该光谱仪当前的空间和光谱采样间隔分别为1.0微米和10纳米。这种分辨率水平足以分辨来自位于单个细胞内或同一细胞不同位置的多个荧光探针的信号响应。展示了CTIS与商用倒置荧光显微镜结合的光谱成像结果。结果表明CTIS能够监测加载了SNARF - 1的大鼠胰岛素瘤细胞中pH的时空演变。对二维(x,y)图像的全光谱信息进行分析的能力允许对细胞群体内的异质生理反应进行精确评估。由于信号水平较低,需要长达2秒的积分时间。然而,对仪器设计进行合理修改将提供更高的系统传输效率,并提高时间和空间分辨率。具体而言,正在为第二代系统开发一种定制光学设计,包括使用更大尺寸的探测器阵列。

相似文献

1
Computed tomography-based spectral imaging for fluorescence microscopy.
Biophys J. 2001 Feb;80(2):986-93. doi: 10.1016/S0006-3495(01)76077-8.
2
Spectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells.
Am J Physiol Cell Physiol. 2006 Feb;290(2):C524-38. doi: 10.1152/ajpcell.00290.2005. Epub 2005 Aug 31.
3
An excitation wavelength-scanning spectral imaging system for preclinical imaging.
Rev Sci Instrum. 2008 Feb;79(2 Pt 1):023707. doi: 10.1063/1.2885043.
5
Hyperspectral imaging: a novel approach for microscopic analysis.
Cytometry. 2001 Apr 1;43(4):239-47. doi: 10.1002/1097-0320(20010401)43:4<239::aid-cyto1056>3.0.co;2-z.
6
Spectroscopic microscopy analysis of the interior pH of individual phospholipid vesicles.
Anal Chem. 2011 Nov 1;83(21):8230-8. doi: 10.1021/ac2019987. Epub 2011 Sep 30.
8
Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry.
J Cell Sci. 1996 Jan;109 ( Pt 1):257-62. doi: 10.1242/jcs.109.1.257.
9
Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.
Opt Express. 2001 Oct 22;9(9):444-53. doi: 10.1364/oe.9.000444.
10
Measurement of intracellular pH using flow cytometry with carboxy-SNARF-1.
Cytometry. 1993 Nov;14(8):916-21. doi: 10.1002/cyto.990140810.

引用本文的文献

2
Spectral image scanning microscopy.
Biomed Opt Express. 2019 Apr 22;10(5):2513-2527. doi: 10.1364/BOE.10.002513. eCollection 2019 May 1.
3
A review of snapshot multidimensional optical imaging: measuring photon tags in parallel.
Phys Rep. 2016 Feb 29;616:1-37. doi: 10.1016/j.physrep.2015.12.004.
4
Hyperspectral optical tomography of intrinsic signals in the rat cortex.
Neurophotonics. 2015 Oct;2(4):045003. doi: 10.1117/1.NPh.2.4.045003. Epub 2015 Nov 12.
5
Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition.
J Biophotonics. 2015 Jun;8(6):441-56. doi: 10.1002/jbio.201400051. Epub 2014 Sep 3.
6
Snapshot 3D optical coherence tomography system using image mapping spectrometry.
Opt Express. 2013 Jun 3;21(11):13758-72. doi: 10.1364/OE.21.013758.
7
Quantitative comparison between full-spectrum and filter-based imaging in hyperspectral fluorescence microscopy.
J Microsc. 2012 May;246(2):113-23. doi: 10.1111/j.1365-2818.2012.03596.x. Epub 2012 Feb 22.
8
Depth-resolved image mapping spectrometer (IMS) with structured illumination.
Opt Express. 2011 Aug 29;19(18):17439-52. doi: 10.1364/OE.19.017439.
9
Real-time snapshot hyperspectral imaging endoscope.
J Biomed Opt. 2011 May;16(5):056005. doi: 10.1117/1.3574756.
10
Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy.
Opt Express. 2010 Jul 5;18(14):14330-44. doi: 10.1364/OE.18.014330.

本文引用的文献

1
Analysis of stained objects in histological sections by spectral imaging and differential absorption.
J Histochem Cytochem. 1999 Oct;47(10):1307-14. doi: 10.1177/002215549904701010.
2
Signal to noise analysis of multiple color fluorescence imaging microscopy.
Cytometry. 1999 Mar 1;35(3):214-26. doi: 10.1002/(sici)1097-0320(19990301)35:3<214::aid-cyto4>3.0.co;2-d.
3
Oxygen sensitivity of mitochondrial metabolic state in isolated skeletal and cardiac myocytes.
Am J Physiol. 1997 Nov;273(5):C1613-22. doi: 10.1152/ajpcell.1997.273.5.C1613.
4
AOTF microscope for imaging with increased speed and spectral versatility.
Biophys J. 1997 Sep;73(3):1215-22. doi: 10.1016/S0006-3495(97)78154-2.
5
Selection of fluorescent ion indicators for simultaneous measurements of pH and Ca2+.
Cell Calcium. 1996 Apr;19(4):337-49. doi: 10.1016/s0143-4160(96)90074-3.
6
Multicolor spectral karyotyping of human chromosomes.
Science. 1996 Jul 26;273(5274):494-7. doi: 10.1126/science.273.5274.494.
7
Simultaneous imaging of intracellular [Ca2+] and pH in single MDCK and glomerular epithelial cells.
Am J Physiol. 1993 Oct;265(4 Pt 1):C1184-90. doi: 10.1152/ajpcell.1993.265.4.C1184.
8
Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.
Biophys J. 1989 Apr;55(4):621-30. doi: 10.1016/S0006-3495(89)82859-0.
9
Intracellular pH measurement using single excitation-dual emission fluorescence ratios.
Am J Physiol. 1990 Jan;258(1 Pt 1):C171-8. doi: 10.1152/ajpcell.1990.258.1.C171.
10
Modulation of glucose-induced insulin secretion from a rat clonal beta-cell line.
Endocrinology. 1990 Dec;127(6):2779-88. doi: 10.1210/endo-127-6-2779.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验