Suppr超能文献

轮状病毒的糖鞘脂结合特异性:唾液酸结合表位的鉴定

Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope.

作者信息

Delorme C, Brüssow H, Sidoti J, Roche N, Karlsson K A, Neeser J R, Teneberg S

机构信息

Nestlé Research Center, Nestec Ltd., CH-1000 Lausanne 26, Switzerland.

出版信息

J Virol. 2001 Mar;75(5):2276-87. doi: 10.1128/JVI.75.5.2276-2287.2001.

Abstract

The glycosphingolipid binding specificities of neuraminidase-sensitive (simian SA11 and bovine NCDV) and neuraminidase-insensitive (bovine UK) rotavirus strains were investigated using the thin-layer chromatogram binding assay. Both triple-layered and double-layered viral particles of SA11, NCDV, and UK bound to nonacid glycosphingolipids, including gangliotetraosylceramide (GA1; also called asialo-GM1) and gangliotriaosylceramide (GA2; also called asialo-GM2). Binding to gangliosides was observed with triple-layered particles but not with double-layered particles. The neuraminidase-sensitive and neuraminidase-insensitive rotavirus strains showed distinct ganglioside binding specificities. All three strains bound to sialylneolactotetraosylceramide and GM2 and GD1a gangliosides. However, NeuAc-GM3 and the GM1 ganglioside were recognized by rotavirus strain UK but not by strains SA11 and NCDV. Conversely, NeuGc-GM3 was bound by rotaviruses SA11 and NCDV but not by rotavirus UK. Thus, neuraminidase-sensitive strains bind to external sialic acid residues in gangliosides, while neuraminidase-insensitive strains recognize gangliosides with internal sialic acids, which are resistant to neuraminidase treatment. By testing a panel of gangliosides with triple-layered particles of SA11 and NCDV, the terminal sequence sialyl-galactose (NeuGc/NeuAcalpha3-Galbeta) was identified as the minimal structural element required for the binding of these strains. The binding of triple-layered particles of SA11 and NCDV to NeuGc-GM3, but not to NeuAc-GM3, suggested that the sequence NeuGcalpha3Galbeta is preferred to NeuAcalpha3Galbeta. Further dissection of this binding epitope showed that the carboxyl group and glycerol side chain of sialic acid played an important role in the binding of such triple-layered particles.

摘要

利用薄层色谱结合试验研究了对神经氨酸酶敏感的(猿猴SA11和牛NCDV)和对神经氨酸酶不敏感的(牛UK)轮状病毒株的糖鞘脂结合特异性。SA11、NCDV和UK的三层和双层病毒颗粒均与非酸性糖鞘脂结合,包括神经节四糖神经酰胺(GA1;也称为去唾液酸GM1)和神经节三糖神经酰胺(GA2;也称为去唾液酸GM2)。观察到三层颗粒与神经节苷脂结合,但双层颗粒未与神经节苷脂结合。对神经氨酸酶敏感和不敏感的轮状病毒株表现出不同的神经节苷脂结合特异性。所有三种病毒株均与唾液酸新乳糖四糖神经酰胺、GM2和GD1a神经节苷脂结合。然而,NeuAc-GM3和GM1神经节苷脂可被轮状病毒株UK识别,但不能被SA11和NCDV株识别。相反,NeuGc-GM3可被轮状病毒SA11和NCDV结合,但不能被轮状病毒UK结合。因此,对神经氨酸酶敏感的病毒株与神经节苷脂中的外部唾液酸残基结合,而对神经氨酸酶不敏感的病毒株识别具有内部唾液酸的神经节苷脂,这些内部唾液酸对神经氨酸酶处理具有抗性。通过用SA11和NCDV的三层颗粒测试一组神经节苷脂,末端序列唾液酸-半乳糖(NeuGc/NeuAcalpha3-Galbeta)被确定为这些病毒株结合所需的最小结构元件。SA11和NCDV的三层颗粒与NeuGc-GM3结合,但不与NeuAc-GM3结合,这表明序列NeuGcalpha3Galbeta比NeuAcalpha3Galbeta更受青睐。对该结合表位的进一步剖析表明,唾液酸的羧基和甘油侧链在这种三层颗粒的结合中起重要作用。

相似文献

1
Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope.
J Virol. 2001 Mar;75(5):2276-87. doi: 10.1128/JVI.75.5.2276-2287.2001.
2
Structure and function of a ganglioside receptor for porcine rotavirus.
J Virol. 1998 Nov;72(11):9079-91. doi: 10.1128/JVI.72.11.9079-9091.1998.
3
Cell surface ligands for rotavirus: mouse intestinal glycolipids and synthetic carbohydrate analogs.
Virology. 1992 Oct;190(2):794-805. doi: 10.1016/0042-6822(92)90917-e.
4
Sialic acid dependence and independence of group A rotaviruses.
Adv Exp Med Biol. 1999;473:309-17. doi: 10.1007/978-1-4615-4143-1_33.
5
Rotaviruses specifically bind to the neutral glycosphingolipid asialo-GM1.
J Virol. 1990 Oct;64(10):4830-5. doi: 10.1128/JVI.64.10.4830-4835.1990.
6
Mouse liver gangliosides.
Carbohydr Res. 1986 Aug 15;151:213-23. doi: 10.1016/s0008-6215(00)90342-2.
7
Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection.
J Virol. 2014 Apr;88(8):4558-71. doi: 10.1128/JVI.03431-13. Epub 2014 Feb 5.
8
Binding specificity of Lactobacillus to glycolipids.
Biochem Biophys Res Commun. 1996 Nov 1;228(1):148-52. doi: 10.1006/bbrc.1996.1630.
9
Evidence for sialidase hydrolyzing gangliosides GM2 and GM1 in rat liver plasma membrane.
FEBS Lett. 1986 Oct 6;206(2):223-8. doi: 10.1016/0014-5793(86)80985-1.

引用本文的文献

2
Specific binding of human P[28] rotavirus VP8* protein to blood group ABH antigens on type 1 chains.
PLoS Pathog. 2025 Jul 21;21(7):e1013298. doi: 10.1371/journal.ppat.1013298. eCollection 2025 Jul.
5
Mechanism and complex roles of HSC70/HSPA8 in viral entry.
Virus Res. 2024 Sep;347:199433. doi: 10.1016/j.virusres.2024.199433. Epub 2024 Jul 17.
6
The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2.
PLoS Pathog. 2024 Apr 4;20(4):e1011750. doi: 10.1371/journal.ppat.1011750. eCollection 2024 Apr.
7
The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca.
bioRxiv. 2023 Oct 16:2023.10.15.562449. doi: 10.1101/2023.10.15.562449.
10
Intestinal mucin-type -glycans: the major players in the host-bacteria-rotavirus interactions.
Gut Microbes. 2023 Jan-Dec;15(1):2197833. doi: 10.1080/19490976.2023.2197833.

本文引用的文献

3
Biochemical characterization of rotavirus receptors in MA104 cells.
J Virol. 2000 Oct;74(20):9362-71. doi: 10.1128/jvi.74.20.9362-9371.2000.
4
Sialic acid dependence and independence of group A rotaviruses.
Adv Exp Med Biol. 1999;473:309-17. doi: 10.1007/978-1-4615-4143-1_33.
5
Integrins alpha2beta1 and alpha4beta1 can mediate SA11 rotavirus attachment and entry into cells.
J Virol. 2000 Jan;74(1):228-36. doi: 10.1128/jvi.74.1.228-236.2000.
6
Entry of rotaviruses is a multistep process.
Virology. 1999 Oct 25;263(2):450-9. doi: 10.1006/viro.1999.9976.
7
Ganglioside GM(1a) on the cell surface is involved in the infection by human rotavirus KUN and MO strains.
J Biochem. 1999 Oct;126(4):683-8. doi: 10.1093/oxfordjournals.jbchem.a022503.
8
Relative frequencies of G and P types among rotaviruses from Indian diarrheic cow and buffalo calves.
J Clin Microbiol. 1999 Jun;37(6):2074-6. doi: 10.1128/JCM.37.6.2074-2076.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验