Suppr超能文献

酵母的异源互补揭示了叶绿体m型硫氧还蛋白的一种新的假定功能。

Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin.

作者信息

Issakidis-Bourguet E, Mouaheb N, Meyer Y, Miginiac-Maslow M

机构信息

Institut de Biotechnologie des Plantes, Université Paris-Sud, UMR CNRS 8618, 91405 Orsay Cedex, France.

出版信息

Plant J. 2001 Jan;25(2):127-35. doi: 10.1046/j.0960-7412.2000.00943.x.

Abstract

In the chloroplast of higher plants, two types of thioredoxins (TRX), namely TRX m which shows high similarity to prokaryotic thioredoxins and TRX f which is more closely related to eukaryotic thioredoxins, have been found and biochemically characterized, but little is known about their physiological specificity with respect to their target(s). Here, we tested, in vivo, the ability of organelle-specific TRX from Arabidopsis thaliana to compensate for TRX deficiency of a Saccharomyces cerevisiae mutant strain. Seven plant organellar TRX (four of the m type, two of the f type and a newly discovered TRX x of prokaryotic type) were expressed in yeast in a putative mature form. None of these heterologous TRX were able to restore growth on sulphate or methionine sulphoxide of the mutant cells. When we tested their ability to rescue the oxidant-hypersensitive phenotype of the TRX-deficient strain, we found that TRX m and TRX x, but not TRX f, affected the tolerance to oxidative stress induced by either hydrogen peroxide or an alkyl hydroperoxide. Athm1, Athm2, Athm4 and Athx induced hydrogen peroxide tolerance like the endogenous yeast thioredoxins. Unexpectedly, Athm3 had a hypersensitizing effect towards oxidative stress. The presence of functional heterologous TRX was checked in the recombinant clones tested, supporting distinct abilities for organelle-specific plant TRX to compensate for TRX deficiency in yeast. We propose a new function for the prokaryotic-type chloroplastic TRX as an anti-oxidant and provide in vivo evidence for different roles of chloroplastic TRX isoforms.

摘要

在高等植物的叶绿体中,已发现两种硫氧还蛋白(TRX),即与原核硫氧还蛋白高度相似的TRX m和与真核硫氧还蛋白关系更密切的TRX f,并对其进行了生化特性鉴定,但对于它们在靶标方面的生理特异性却知之甚少。在此,我们在体内测试了拟南芥细胞器特异性TRX补偿酿酒酵母突变株TRX缺陷的能力。七种植物细胞器TRX(四种m型、两种f型和一种新发现的原核型TRX x)以假定的成熟形式在酵母中表达。这些异源TRX均无法恢复突变细胞在硫酸盐或甲硫氨酸亚砜上的生长。当我们测试它们挽救TRX缺陷菌株对氧化剂超敏表型的能力时,发现TRX m和TRX x(而非TRX f)影响了对过氧化氢或烷基过氧化氢诱导的氧化应激的耐受性。Athm1、Athm2、Athm4和Athx诱导的过氧化氢耐受性与内源性酵母硫氧还蛋白相同。出乎意料的是,Athm3对氧化应激具有超敏作用。在所测试的重组克隆中检查了功能性异源TRX的存在,这支持了细胞器特异性植物TRX补偿酵母中TRX缺陷的不同能力。我们提出了原核型叶绿体TRX作为抗氧化剂的新功能,并为叶绿体TRX同工型的不同作用提供了体内证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验