Suppr超能文献

硫氧还蛋白()基因家族的全基因组鉴定与表达分析揭示了其在小麦(L.)抗叶锈病中的作用。

Genome-Wide Identification and Expression Analysis of the Thioredoxin () Gene Family Reveals Its Role in Leaf Rust Resistance in Wheat ( L.).

作者信息

Bhurta Ramesh, Hurali Deepak T, Tyagi Sandhya, Sathee Lekshmy, Adavi B Sandeep, Singh Dalveer, Mallick Niharika, Chinnusamy Viswanathan, Jha Shailendra K

机构信息

Division of Genetics, ICAR-IARI, New Delhi, India.

Division of Plant Physiology, ICAR-IARI, New Delhi, India.

出版信息

Front Genet. 2022 Mar 25;13:836030. doi: 10.3389/fgene.2022.836030. eCollection 2022.

Abstract

Bread wheat ( L.; ) is the staple cereal crop for the majority of the world's population. Leaf rust disease caused by the obligate fungal pathogen, L., is a biotrophic pathogen causing significant economic yield damage. The alteration in the redox homeostasis of the cell caused by various kinds of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in response to pathogenic infections is controlled by redox regulators. Thioredoxin (Trx) is one of the redox regulators with low molecular weight and is thermostable. Through a genome-wide approach, forty-two (42) wheat genes () were identified across the wheat chromosome groups A, B, and D genomes containing 12, 16, and 14 genes, respectively. Based on expression analysis, 15 genes were selected and utilized for further experimentation. These 15 genes were clustered into six groups by phylogenetic analysis. MicroRNA (miRNA) target analysis revealed eight different miRNA-targeted genes. Protein-protein interaction (PPI) analysis showed proteins interact with thioredoxin reductase, peroxiredoxin, and uncharacterized proteins. Expression profiles resulting from quantitative real-time PCR (qRT-PCR) revealed four genes (, , , and ) were significantly induced in response to leaf rust infection. Localization of ROS and its content estimation and an assay of antioxidant enzymes and expression analysis suggested that have been involved in ROS homeostasis at span 24HAI-72HAI during the leaf rust resistance.

摘要

普通小麦(Triticum aestivum L.)是世界上大多数人口的主要谷类作物。由专性真菌病原体叶锈菌(Puccinia triticina Eriks.)引起的叶锈病是一种活体营养型病原体,会造成重大的经济产量损失。细胞的氧化还原稳态因各种活性氧(ROS)和活性氮(RNS)响应致病性感染而发生的改变,受氧化还原调节因子控制。硫氧还蛋白(Trx)是一种低分子量且热稳定的氧化还原调节因子。通过全基因组方法,在小麦A、B和D染色体组中鉴定出42个小麦Trx基因(TaTrxs),分别包含12、16和14个TaTrx基因。基于TaTrx表达分析,选择了15个TaTrx基因用于进一步实验。通过系统发育分析,这15个基因被聚类为六组。微小RNA(miRNA)靶标分析揭示了8个不同的miRNA靶向TaTrx基因。蛋白质-蛋白质相互作用(PPI)分析表明,TaTrx蛋白与硫氧还蛋白还原酶、过氧化物还原酶和未鉴定的蛋白质相互作用。定量实时PCR(qRT-PCR)产生的表达谱显示,4个TaTrx基因(TaTrx1、TaTrx2、TaTrx3和TaTrx4)在响应叶锈病感染时被显著诱导。ROS的定位及其含量估计以及抗氧化酶分析和表达分析表明,TaTrx在叶锈病抗性过程中的24小时至72小时期间参与了ROS稳态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d72/8990325/2aeba6f3964a/fgene-13-836030-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验