Mouaheb N, Thomas D, Verdoucq L, Monfort P, Meyer Y
Laboratoire de Physiologie Vegetale Mol culaire, Unite Mixte de Recherche Centre National de la Recherche Scientifique 5545, Universite de Perpignan, Avenue de Villeneuve, (F) 66025 Perpignan, France.
Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3312-7. doi: 10.1073/pnas.95.6.3312.
Whereas vertebrates possess only two thioredoxin genes, higher plants present a much greater diversity of thioredoxins. For example, Arabidopsis thaliana has five cytoplasmic thioredoxins (type h) and at least as many chloroplastic thioredoxins. The abundance of plant thioredoxins leads to the question whether the various plant thioredoxins play a similar role or have specific functions. Because most of these proteins display very similar activities on artificial or biological substrates in vitro, we developed an in vivo approach to answer this question. The disruption of both of the two Saccharomyces cerevisiae thioredoxin genes leads to pleiotropic effects including methionine auxotrophy, H2O2 hypersensitivity, altered cell cycle characteristics, and a limited ability to use methionine sulfoxide as source of methionine. We expressed eight plant thioredoxins (six cytoplasmic and two chloroplastic) in yeast trx1, trx2 double mutant cells and analyzed the different phenotypes. Arabidopsis type h thioredoxin 2 efficiently restored sulfate assimilation whereas Arabidopsis type h thioredoxin 3 conferred H2O2 tolerance. All thioredoxins tested could complement for reduction of methionine sulfoxide, whereas only type h thioredoxins were able to complement the cell cycle defect. These findings clearly indicate that specific interactions between plant thioredoxins and their targets occur in vivo.
脊椎动物仅拥有两个硫氧还蛋白基因,而高等植物中的硫氧还蛋白具有更高的多样性。例如,拟南芥有五种细胞质硫氧还蛋白(h型),叶绿体硫氧还蛋白的数量至少与之相同。植物硫氧还蛋白的丰富性引发了一个问题,即各种植物硫氧还蛋白是发挥相似的作用还是具有特定的功能。由于这些蛋白质中的大多数在体外对人工或生物底物表现出非常相似的活性,我们开发了一种体内方法来回答这个问题。破坏酿酒酵母的两个硫氧还蛋白基因会导致多效性效应,包括甲硫氨酸营养缺陷、对过氧化氢超敏、细胞周期特征改变以及将甲硫氨酸亚砜用作甲硫氨酸来源的能力有限。我们在酵母trx1、trx2双突变细胞中表达了八种植物硫氧还蛋白(六种细胞质和两种叶绿体),并分析了不同的表型。拟南芥h型硫氧还蛋白2有效地恢复了硫酸盐同化,而拟南芥h型硫氧还蛋白3赋予了对过氧化氢的耐受性。所有测试的硫氧还蛋白都能补充甲硫氨酸亚砜的还原,而只有h型硫氧还蛋白能够补充细胞周期缺陷。这些发现清楚地表明,植物硫氧还蛋白与其靶标之间在体内发生了特异性相互作用。