Suppr超能文献

质体硫氧还蛋白:植物中“一专多能”的氧化还原信号系统。

Plastid thioredoxins: a "one-for-all" redox-signaling system in plants.

机构信息

Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidïn, Consejo Superior de Investigaciones Cientïficas Granada, Spain.

出版信息

Front Plant Sci. 2013 Nov 21;4:463. doi: 10.3389/fpls.2013.00463.

Abstract

The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain and the general metabolism is vital for these organisms. Frequently, evolutionary plant adaptation has consisted in the appearance of multigenic families, comprising an array of enzymes, structural components, or sensing, and signaling elements, in numerous occasions with highly conserved primary sequences that sometimes make it difficult to discern between redundancy and specificity among the members of a same family. However, all this gene diversity is aimed to sort environment-derived plant signals to efficiently channel the external incoming information inducing a right physiological answer. Oxygenic photosynthesis is a powerful source of reactive oxygen species (ROS), molecules with a dual oxidative/signaling nature. In response to ROS, one of the most frequent post-translational modifications occurring in redox signaling proteins is the formation of disulfide bridges (from Cys oxidation). This review is focused on the role of plastid thioredoxins (pTRXs), proteins containing two Cys in their active site and largely known as part of the plant redox-signaling network. Several pTRXs types have been described so far, namely, TRX f, m, x, y, and z. In recent years, improvements in proteomic techniques and the study of loss-of-function mutants have enabled us to grasp the importance of TRXs for the plastid physiology. We will analyze the specific signaling function of each TRX type and discuss about the emerging role in non-photosynthetic plastids of these redox switchers.

摘要

植物的固着特性迫使它们面对不断变化的环境,而不是像动物那样逃避恶劣条件。为了克服这一生存挑战,精细监测和控制光合作用电子传递链和一般新陈代谢的状态对这些生物至关重要。植物的进化适应经常表现为多基因家族的出现,这些家族包含一系列酶、结构成分或感应和信号元件,在许多情况下,它们具有高度保守的一级序列,这有时使得难以区分同一家族成员之间的冗余和特异性。然而,所有这些基因多样性旨在对植物信号进行分类,以有效地传递诱导正确生理反应的外部传入信息。放氧光合作用是活性氧(ROS)的强大来源,ROS 分子具有双重氧化/信号性质。作为对 ROS 的响应,在氧化还原信号蛋白中发生的最常见的翻译后修饰之一是形成二硫键(来自 Cys 氧化)。本综述重点介绍质体硫氧还蛋白(pTRXs)的作用,这些蛋白在其活性位点含有两个 Cys,并且很大程度上被认为是植物氧化还原信号网络的一部分。迄今为止,已经描述了几种 pTRX 类型,即 TRX f、m、x、y 和 z。近年来,蛋白质组学技术的改进和功能丧失突变体的研究使我们能够理解 TRXs 对质体生理学的重要性。我们将分析每种 TRX 类型的特定信号功能,并讨论这些氧化还原开关在非光合质体中的新兴作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a1/3836485/d4ed107064c2/fpls-04-00463-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验