Spiegelhalter D J
MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 2SR, UK.
Stat Med. 2001 Feb 15;20(3):435-52. doi: 10.1002/1097-0258(20010215)20:3<435::aid-sim804>3.0.co;2-e.
Bayesian methods for cluster randomized trials extend the random-effects formulation by allowing both the use of external evidence on parameters and straightforward relaxation of the standard normality and constant variance assumptions. Care is required in specifying prior distributions on variance components, and a number of different options are explored with implied prior distributions for other parameters given in closed form. Markov chain Monte Carlo (MCMC) methods permit the fitting of very general models and the introduction of parameter uncertainty into power calculations. We illustrate these ideas using a published example in which general practices were randomized to intervention or control, and show that different choices of supposedly 'non-informative' prior distributions can have substantial influence on conclusions. We also illustrate the use of forward simulation methods in power calculations with uncertainty on multiple inputs. Bayesian methods have the potential to be very useful but guidance is required as to appropriate strategies for robust analysis. Our current experience leads us to recommend a standard 'non-informative' prior distribution for the within-cluster sampling variance, and an independent prior on the intraclass correlation coefficient (ICC). The latter may exploit background evidence or, as a reference analysis, be a uniform ICC or a 'uniform shrinkage' prior.
用于整群随机试验的贝叶斯方法通过允许使用关于参数的外部证据以及直接放宽标准正态性和恒定方差假设来扩展随机效应公式。在指定方差分量的先验分布时需要谨慎,并且探索了许多不同的选项,同时以封闭形式给出了其他参数的隐含先验分布。马尔可夫链蒙特卡罗(MCMC)方法允许拟合非常一般的模型,并将参数不确定性引入功效计算中。我们使用一个已发表的例子来说明这些想法,在该例子中,将普通医疗实践随机分为干预组或对照组,并表明不同的所谓“非信息性”先验分布选择可能会对结论产生重大影响。我们还说明了在多个输入存在不确定性的功效计算中使用前向模拟方法。贝叶斯方法可能非常有用,但需要有关稳健分析的适当策略的指导。我们目前的经验使我们建议对组内抽样方差采用标准的“非信息性”先验分布,并对组内相关系数(ICC)采用独立先验。后者可以利用背景证据,或者作为参考分析,采用均匀的ICC或“均匀收缩”先验。