Cunanan Kristen M, Carlin Bradley P, Peterson Kevin A
Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
Clin Trials. 2016 Dec;13(6):641-650. doi: 10.1177/1740774516656583. Epub 2016 Jul 17.
Many clinical trial designs are impractical for community-based clinical intervention trials. Stepped wedge trial designs provide practical advantages, but few descriptions exist of their clinical implementational features, statistical design efficiencies, and limitations.
Enhance efficiency of stepped wedge trial designs by evaluating the impact of design characteristics on statistical power for the British Columbia Telehealth Trial.
The British Columbia Telehealth Trial is a community-based, cluster-randomized, controlled clinical trial in rural and urban British Columbia. To determine the effect of an Internet-based telehealth intervention on healthcare utilization, 1000 subjects with an existing diagnosis of congestive heart failure or type 2 diabetes will be enrolled from 50 clinical practices. Hospital utilization is measured using a composite of disease-specific hospital admissions and emergency visits. The intervention comprises online telehealth data collection and counseling provided to support a disease-specific action plan developed by the primary care provider. The planned intervention is sequentially introduced across all participating practices. We adopt a fully Bayesian, Markov chain Monte Carlo-driven statistical approach, wherein we use simulation to determine the effect of cluster size, sample size, and crossover interval choice on type I error and power to evaluate differences in hospital utilization.
For our Bayesian stepped wedge trial design, simulations suggest moderate decreases in power when crossover intervals from control to intervention are reduced from every 3 to 2 weeks, and dramatic decreases in power as the numbers of clusters decrease. Power and type I error performance were not notably affected by the addition of nonzero cluster effects or a temporal trend in hospitalization intensity.
CONCLUSION/LIMITATIONS: Stepped wedge trial designs that intervene in small clusters across longer periods can provide enhanced power to evaluate comparative effectiveness, while offering practical implementation advantages in geographic stratification, temporal change, use of existing data, and resource distribution. Current population estimates were used; however, models may not reflect actual event rates during the trial. In addition, temporal or spatial heterogeneity can bias treatment effect estimates.
许多临床试验设计对于基于社区的临床干预试验而言并不实用。阶梯楔形试验设计具有实际优势,但关于其临床实施特征、统计设计效率及局限性的描述却很少。
通过评估设计特征对不列颠哥伦比亚远程医疗试验统计效能的影响,提高阶梯楔形试验设计的效率。
不列颠哥伦比亚远程医疗试验是一项在不列颠哥伦比亚农村和城市地区开展的基于社区的整群随机对照临床试验。为确定基于互联网的远程医疗干预对医疗保健利用的影响,将从50个临床机构招募1000名已有充血性心力衰竭或2型糖尿病诊断的受试者。医院利用情况通过特定疾病住院和急诊就诊的综合指标来衡量。干预措施包括在线远程医疗数据收集和咨询,以支持初级保健提供者制定的特定疾病行动计划。计划的干预措施将在所有参与机构中依次引入。我们采用完全贝叶斯、马尔可夫链蒙特卡洛驱动的统计方法,通过模拟来确定整群大小、样本量和交叉间隔选择对I型错误和评估医院利用差异效能的影响。
对于我们的贝叶斯阶梯楔形试验设计,模拟结果表明,当从对照到干预的交叉间隔从每3周减少到每2周时,效能会适度降低,而随着整群数量的减少,效能会急剧下降。添加非零整群效应或住院强度的时间趋势对效能和I型错误表现没有显著影响。
结论/局限性:在较长时间内对小整群进行干预的阶梯楔形试验设计可以提供更高的效能来评估比较效果,同时在地理分层、时间变化、现有数据的使用和资源分配方面具有实际实施优势。使用了当前的人口估计数;然而,模型可能无法反映试验期间的实际事件发生率。此外,时间或空间异质性可能会使治疗效果估计产生偏差。