Suppr超能文献

人体剧烈运动时肌肉中乳酸与质子交换的解离

Dissociation between lactate and proton exchange in muscle during intense exercise in man.

作者信息

Bangsbo J, Juel C, Hellsten Y, Saltin B

机构信息

Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark.

出版信息

J Physiol. 1997 Oct 15;504 ( Pt 2)(Pt 2):489-99. doi: 10.1111/j.1469-7793.1997.489be.x.

Abstract
  1. Transport of lactate, H+ and fluid across muscle sarcolemma was studied in contracting muscles under varying blood acid-base conditions. 2. Subjects performed two-legged submaximal knee-extensor exercise for 29-35 min consisting of warming up for 5 min followed by 10 min of leg exercise (L1), leg and arm exercise for 6-10 min (L2 + A) and leg exercise for 10 min (L3). The experimental protocol was performed on two occasions; inspiring air (normoxia, N) or breathing 14% O2 in N2 (hypoxia, H). Leg blood flow was measured and femoral arterial and venous blood was sampled before and during each phase of exercise. 3. Arterial blood lactate concentration increased progressively during exercise to 5.9 +/- 0.8 (N) and 8.2 +/- 0.8 mmol l-1 (H) (P < 0.05) after 5.5 min of L2 + A. Arterial blood pH was higher (P < 0.05) in H than in N, whereas arterial blood HCO3- concentrations were the same. Leg lactate release was higher in H than in N (3.1 +/- 0.7 vs. 2.0 mmol l-1 (P < 0.05) during L1. In L2 + A a net uptake of lactate was observed in both N and H. The concentration of lactate in the red blood cells increased during exercise to 2.3 +/- 0.4 (N) and 4.3 +/- 0.7 mmol l-1 (H) (P < 0.05) after 5.5 min of L2 + A, but no red blood cell femoral arterial-venous lactate difference was observed. 4. Net proton release, estimated from actual base excess (ABE) adjusted for changes in reduced haemoglobin, was significant (P < 0.05) both at rest and during each phase of exercise. Furthermore, the difference between net proton and lactate release was positive throughout exercise and of similar magnitude in N and H. 5. The present data suggest that (1) H+ exchange in muscle during submaximal exercise can to a large extent occur through mechanisms other than via coupling to lactate; (2) muscle transport of H+ is insensitive to changes in blood pH in the range of 0.02-0.08 pH units; (3) transport of lactate across the membrane of red blood cells appears to be of minor importance for lactate release from active muscles.
摘要
  1. 在不同的血液酸碱条件下,研究了收缩肌肉中乳酸、氢离子和液体跨肌膜的转运情况。2. 受试者进行了29 - 35分钟的双腿次最大强度伸膝运动,包括5分钟热身,随后是10分钟腿部运动(L1)、6 - 10分钟腿部和手臂运动(L2 + A)以及10分钟腿部运动(L3)。实验方案分两次进行;吸入空气(常氧,N)或在氮气中呼吸14%氧气(低氧,H)。在运动的每个阶段之前和期间测量腿部血流量,并采集股动脉和静脉血样。3. 在L2 + A运动5.5分钟后,动脉血乳酸浓度在运动过程中逐渐升高至5.9±0.8(N)和8.2±0.8 mmol·l⁻¹(H)(P < 0.05)。动脉血pH值在H组高于N组(P < 0.05),而动脉血HCO₃⁻浓度相同。在L1期间,腿部乳酸释放量H组高于N组(3.1±0.7 vs. 2.0 mmol·l⁻¹,P < 0.05)。在L2 + A阶段,在N组和H组均观察到乳酸的净摄取。在L2 + A运动5.5分钟后,红细胞中乳酸浓度在运动过程中升高至2.3±0.4(N)和4.3±0.7 mmol·l⁻¹(H)(P < 0.05),但未观察到红细胞股动脉 - 静脉乳酸差异。4. 根据针对还原血红蛋白变化调整后的实际碱剩余(ABE)估算的净质子释放,在静息时和运动的每个阶段均具有显著性(P < 0.05)。此外,在整个运动过程中,净质子和乳酸释放之间的差异为正值,且在N组和H组中幅度相似。5. 目前的数据表明:(1)次最大强度运动期间肌肉中的氢离子交换在很大程度上可通过与乳酸偶联以外的机制发生;(2)肌肉中氢离子的转运对0.02 - 0.08 pH单位范围内的血液pH变化不敏感;(3)红细胞膜对乳酸的转运对于活跃肌肉中乳酸的释放似乎不太重要。

相似文献

1
Dissociation between lactate and proton exchange in muscle during intense exercise in man.
J Physiol. 1997 Oct 15;504 ( Pt 2)(Pt 2):489-99. doi: 10.1111/j.1469-7793.1997.489be.x.
2
Lactate and H+ uptake in inactive muscles during intense exercise in man.
J Physiol. 1995 Oct 1;488 ( Pt 1)(Pt 1):219-29. doi: 10.1113/jphysiol.1995.sp020960.
3
Potassium fluxes in contracting human skeletal muscle and red blood cells.
Am J Physiol. 1999 Jan;276(1):R184-8. doi: 10.1152/ajpregu.1999.276.1.R184.
4
Sprint training enhances ionic regulation during intense exercise in men.
J Physiol. 1997 Jun 15;501 ( Pt 3)(Pt 3):687-702. doi: 10.1111/j.1469-7793.1997.687bm.x.
6
Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
J Physiol. 1993 Mar;462:115-33. doi: 10.1113/jphysiol.1993.sp019546.
7
Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
J Physiol. 2001 Oct 1;536(Pt 1):261-71. doi: 10.1111/j.1469-7793.2001.00261.x.
9
Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man.
J Physiol. 1996 Sep 1;495 ( Pt 2)(Pt 2):587-96. doi: 10.1113/jphysiol.1996.sp021618.
10
Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.
J Physiol. 1997 Jun 15;501 ( Pt 3)(Pt 3):703-16. doi: 10.1111/j.1469-7793.1997.703bm.x.

引用本文的文献

2
Mitochondrial ion channels in cardiac function.
Am J Physiol Cell Physiol. 2021 Nov 1;321(5):C812-C825. doi: 10.1152/ajpcell.00246.2021. Epub 2021 Sep 22.
4
Cardiovascular control during whole body exercise.
J Appl Physiol (1985). 2016 Aug 1;121(2):376-90. doi: 10.1152/japplphysiol.00674.2015. Epub 2016 Jun 16.
5
Physiological Demands of Simulated Off-Road Cycling Competition.
J Sports Sci Med. 2015 Nov 24;14(4):799-810. eCollection 2015 Dec.
6
Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner.
Pain. 2013 Dec;154(12):2668-2676. doi: 10.1016/j.pain.2013.07.047. Epub 2013 Jul 30.
7
Extracellular pH defense against lactic acid in untrained and trained altitude residents.
Eur J Appl Physiol. 2008 May;103(2):127-37. doi: 10.1007/s00421-008-0675-0. Epub 2008 Jan 15.
8
Extracellular bicarbonate and non-bicarbonate buffering against lactic acid during and after exercise.
Eur J Appl Physiol. 2007 Jul;100(4):457-67. doi: 10.1007/s00421-007-0453-4. Epub 2007 Apr 21.
9
Causes of differences in exercise-induced changes of base excess and blood lactate.
Eur J Appl Physiol. 2007 Jan;99(2):163-71. doi: 10.1007/s00421-006-0328-0. Epub 2006 Nov 7.
10
Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
J Physiol. 2004 Feb 1;554(Pt 3):857-70. doi: 10.1113/jphysiol.2003.050658. Epub 2003 Nov 21.

本文引用的文献

1
LACTATE AND PYRUVATE GRADIENTS BETWEEN RED BLOOD CELLS AND PLASMA DURING ACUTE ASPHYXIA.
J Appl Physiol. 1964 Nov;19:1100-4. doi: 10.1152/jappl.1964.19.6.1100.
2
FLOW AND PROTEIN CONTENT OF LYMPH IN RESTING AND EXERCISING SKELETAL MUSCLE.
Acta Physiol Scand. 1964 Mar;60:278-85. doi: 10.1111/j.1748-1716.1964.tb02889.x.
3
Transport of lactate and other monocarboxylates across mammalian plasma membranes.
Am J Physiol. 1993 Apr;264(4 Pt 1):C761-82. doi: 10.1152/ajpcell.1993.264.4.C761.
4
Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
J Physiol. 1993 Mar;462:115-33. doi: 10.1113/jphysiol.1993.sp019546.
6
Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles.
Biochim Biophys Acta. 1995 Mar 16;1265(2-3):127-32. doi: 10.1016/0167-4889(94)00209-w.
7
Net O2, CO2, lactate, and acid exchange by muscle during progressive working contractions.
J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):161-5. doi: 10.1152/jappl.1984.56.1.161.
8
Dynamics of O2, CO2, lactate, and acid exchange during contractions and recovery.
J Appl Physiol Respir Environ Exerc Physiol. 1983 Jun;54(6):1687-92. doi: 10.1152/jappl.1983.54.6.1687.
9
Muscle metabolites during submaximal and maximal exercise in man.
Scand J Clin Lab Invest. 1970 Dec;26(4):385-94. doi: 10.3109/00365517009046250.
10
Maximal perfusion of skeletal muscle in man.
J Physiol. 1985 Sep;366:233-49. doi: 10.1113/jphysiol.1985.sp015794.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验