Bidan G, Billon M, Galasso K, Livache T, Mathis G, Roget A, Torres-Rodriguez L M, Vieil E
CEA-GRENOBLE, UMR 5819 (CNRS-CEA-Université J. Fourier), 17, avenue des Martyrs, 38054 Grenoble, France.
Appl Biochem Biotechnol. 2000 Nov-Dec;89(2-3):183-93. doi: 10.1385/abab:89:2-3:183.
Biosensors based on electronic conducting polymers appear particularly well suited to the requirements of modern biological analysis--multi-parametric assays, high information density, and miniaturization. We describe a new methodology for the preparation of addressed DNA matrices. The process includes an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing on their 5' end a pyrrole moiety. The resulting polymer film deposited on the addressed electrode consists of pyrrole chains bearing covalently linked oligonucleotides (ODN). An oligonucleotide array was constructed on a silicon device bearing a matrix of 48 addressable 50 x 50 microns gold microelectrodes. This technology was successfully applied to the genotyping of hepatitis C virus in blood samples. Fluorescence detection results show good sensitivity and a high degree of spatial resolution. In addition, gravimetric studies carried out by the quartz crystal microbalance technique provide quantitative data on the amount of surface-immobilized species. In the case of ODN, it allows discrimination between hybridization and nonspecific adsorption. The need for versatile processes for the immobilization of biological species on surfaces led us to extend our methodology. A biotinylated surface was obtained by coelectropolymerization of pyrrole and biotin-pyrrole monomers. The efficiency for recognition (and consequently immobilization) of R-phycoerythrin-avidin was demonstrated by fluorescence detection. Copolymerization of decreasing ratios of pyrrole-biotin over pyrrole allowed us to obtain a decreasing scale of fluorescence.
基于电子导电聚合物的生物传感器似乎特别适合现代生物分析的要求——多参数分析、高信息密度和小型化。我们描述了一种制备寻址DNA矩阵的新方法。该过程包括吡咯与在其5'端带有吡咯部分的寡核苷酸的电化学定向共聚。沉积在寻址电极上的所得聚合物膜由带有共价连接的寡核苷酸(ODN)的吡咯链组成。在带有48个可寻址的50×50微米金微电极矩阵的硅器件上构建了寡核苷酸阵列。该技术已成功应用于血样中丙型肝炎病毒的基因分型。荧光检测结果显示出良好的灵敏度和高度的空间分辨率。此外,通过石英晶体微天平技术进行的重量分析研究提供了关于表面固定物种数量的定量数据。对于ODN,它允许区分杂交和非特异性吸附。将生物物种固定在表面上需要通用的方法,这促使我们扩展我们的方法。通过吡咯与生物素-吡咯单体的共电聚合获得了生物素化表面。通过荧光检测证明了R-藻红蛋白-抗生物素蛋白识别(并因此固定)的效率。吡咯-生物素与吡咯比例降低的共聚使我们能够获得荧光强度降低的结果。