Suppr超能文献

线粒体中依赖热休克蛋白70的导入系统能使前体蛋白主动解折叠,并缩短转运的延迟期。

The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation.

作者信息

Lim J H, Martin F, Guiard B, Pfanner N, Voos W

机构信息

Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.

出版信息

EMBO J. 2001 Mar 1;20(5):941-50. doi: 10.1093/emboj/20.5.941.

Abstract

Unfolding is an essential process during translocation of preproteins into mitochondria; however, controversy exists as to whether mitochondria play an active role in unfolding. We have established an in vitro system with a kinetic saturation of the mitochondrial import machinery, yielding translocation rates comparable to in vivo import rates. Preproteins with short N-terminal segments in front of a folded domain show a characteristic delay of the onset of translocation (lag phase) although the maximal import rate is similar to that of longer preproteins. The lag phase is shortened by extending the N-terminal segment to improve the accessibility to matrix heat shock protein 70 and abolished by unfolding of the preprotein. A mutant mtHsp70 defective in binding to the inner membrane prolongs the lag phase and reduces the translocation activity. A direct comparison of the rate of spontaneous unfolding in solution with that during translocation demonstrates that unfolding by mitochondria is significantly faster, proving an active unfolding process. We conclude that access of mtHsp70 to N-terminal preprotein segments is critical for active unfolding and initiation of translocation.

摘要

解折叠是前体蛋白转运至线粒体过程中的一个重要步骤;然而,线粒体是否在解折叠过程中发挥积极作用仍存在争议。我们建立了一个体外系统,使线粒体导入机制达到动力学饱和,得到的转运速率与体内导入速率相当。在折叠结构域前具有短N端片段的前体蛋白,尽管其最大导入速率与较长前体蛋白相似,但显示出特征性的转运起始延迟(滞后阶段)。通过延长N端片段以改善与基质热休克蛋白70的可及性,滞后阶段得以缩短,而前体蛋白的解折叠则可消除滞后阶段。与内膜结合有缺陷的突变型线粒体热休克蛋白70会延长滞后阶段并降低转运活性。对溶液中自发解折叠速率与转运过程中解折叠速率的直接比较表明,线粒体介导的解折叠明显更快,证明存在一个积极的解折叠过程。我们得出结论,线粒体热休克蛋白70与前体蛋白N端片段的接触对于积极的解折叠和转运起始至关重要。

相似文献

2
Unfolding of preproteins upon import into mitochondria.
EMBO J. 1998 Nov 16;17(22):6497-507. doi: 10.1093/emboj/17.22.6497.
4
C- to N-terminal translocation of preproteins into mitochondria.
EMBO J. 1998 Nov 16;17(22):6508-15. doi: 10.1093/emboj/17.22.6508.
5
Mitochondrial Hsp70/MIM44 complex facilitates protein import.
Nature. 1994 Oct 27;371(6500):768-74. doi: 10.1038/371768a0.
7
Active unfolding of precursor proteins during mitochondrial protein import.
EMBO J. 1997 Nov 17;16(22):6727-36. doi: 10.1093/emboj/16.22.6727.
10
A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins.
J Cell Biol. 1993 Oct;123(1):109-17. doi: 10.1083/jcb.123.1.109.

引用本文的文献

1
Optogenetic Control of the Mitochondrial Protein Import in Mammalian Cells.
Cells. 2024 Oct 9;13(19):1671. doi: 10.3390/cells13191671.
2
Single-molecule evidence of Entropic Pulling by Hsp70 chaperones.
Nat Commun. 2024 Oct 8;15(1):8604. doi: 10.1038/s41467-024-52674-y.
3
Constraint-based modeling of yeast mitochondria reveals the dynamics of protein import and iron-sulfur cluster biogenesis.
iScience. 2021 Oct 15;24(11):103294. doi: 10.1016/j.isci.2021.103294. eCollection 2021 Nov 19.
4
Multiple variants of the human presequence translocase motor subunit Magmas govern the mitochondrial import.
J Biol Chem. 2021 Dec;297(6):101349. doi: 10.1016/j.jbc.2021.101349. Epub 2021 Oct 29.
5
Accessing Mitochondrial Protein Import in Living Cells by Protein Microinjection.
Front Cell Dev Biol. 2021 Jul 7;9:698658. doi: 10.3389/fcell.2021.698658. eCollection 2021.
6
Prolines in Transit Peptides Are Crucial for Efficient Preprotein Translocation into Chloroplasts.
Plant Physiol. 2018 Jan;176(1):663-677. doi: 10.1104/pp.17.01553. Epub 2017 Nov 20.
8
Quantifying the role of chaperones in protein translocation by computational modeling.
Front Mol Biosci. 2015 Mar 23;2:8. doi: 10.3389/fmolb.2015.00008. eCollection 2015.
9
Role of membrane contact sites in protein import into mitochondria.
Protein Sci. 2015 Mar;24(3):277-97. doi: 10.1002/pro.2625. Epub 2015 Feb 12.
10
Mortalin, apoptosis, and neurodegeneration.
Biomolecules. 2012 Mar 1;2(1):143-64. doi: 10.3390/biom2010143.

本文引用的文献

1
Effect of the protein import machinery at the mitochondrial surface on precursor stability.
Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):12991-6. doi: 10.1073/pnas.230243097.
2
Recognition of preproteins by the isolated TOM complex of mitochondria.
EMBO J. 2000 Sep 15;19(18):4895-902. doi: 10.1093/emboj/19.18.4895.
4
Protein translocation into mitochondria: the role of TIM complexes.
Trends Cell Biol. 2000 Jan;10(1):25-31. doi: 10.1016/s0962-8924(99)01684-0.
5
Mitochondria unfold precursor proteins by unraveling them from their N-termini.
Nat Struct Biol. 1999 Dec;6(12):1132-8. doi: 10.1038/70073.
6
Mechanisms of protein translocation into mitochondria.
Biochim Biophys Acta. 1999 Nov 16;1422(3):235-54. doi: 10.1016/s0304-4157(99)00007-6.
7
How membrane proteins travel across the mitochondrial intermembrane space.
Trends Biochem Sci. 1999 Nov;24(11):428-32. doi: 10.1016/s0968-0004(99)01462-0.
8
Protein translocation: is Hsp70 pulling my chain?
Curr Biol. 1999 Oct 21;9(20):R779-82. doi: 10.1016/S0960-9822(00)80012-3.
10
The structure of precursor proteins during import into mitochondria.
J Biol Chem. 1999 Apr 30;274(18):12759-64. doi: 10.1074/jbc.274.18.12759.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验