Dorman D C, Allen S L, Byczkowski J Z, Claudio L, Fisher J E, Fisher J W, Harry G J, Li A A, Makris S L, Padilla S, Sultatos L G, Mileson B E
Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina, USA.
Environ Health Perspect. 2001 Mar;109 Suppl 1(Suppl 1):101-11. doi: 10.1289/ehp.01109s1101.
We review pharmacokinetic and pharmacodynamic factors that should be considered in the design and interpretation of developmental neurotoxicity studies. Toxicologic effects on the developing nervous system depend on the delivered dose, exposure duration, and developmental stage at which exposure occurred. Several pharmacokinetic processes (absorption, distribution, metabolism, and excretion) govern chemical disposition within the dam and the nervous system of the offspring. In addition, unique physical features such as the presence or absence of a placental barrier and the gradual development of the blood--brain barrier influence chemical disposition and thus modulate developmental neurotoxicity. Neonatal exposure may depend on maternal pharmacokinetic processes and transfer of the xenobiotic through the milk, although direct exposure may occur through other routes (e.g., inhalation). Measurement of the xenobiotic in milk and evaluation of biomarkers of exposure or effect following exposure can confirm or characterize neonatal exposure. Physiologically based pharmacokinetic and pharmacodynamic models that incorporate these and other determinants can estimate tissue dose and biologic response following in utero or neonatal exposure. These models can characterize dose--response relationships and improve extrapolation of results from animal studies to humans. In addition, pharmacologic data allow an experimenter to determine whether exposure to the test chemical is adequate, whether exposure occurs during critical periods of nervous system development, whether route and duration of exposure are appropriate, and whether developmental neurotoxicity can be differentiated from direct actions of the xenobiotic.
我们回顾了在发育神经毒性研究的设计和解释中应考虑的药代动力学和药效学因素。对发育中的神经系统的毒理学影响取决于给药剂量、暴露持续时间以及暴露发生时的发育阶段。几种药代动力学过程(吸收、分布、代谢和排泄)控制着母体和后代神经系统内化学物质的处置。此外,诸如胎盘屏障的存在与否以及血脑屏障的逐渐发育等独特的生理特征会影响化学物质的处置,从而调节发育神经毒性。新生儿暴露可能取决于母体的药代动力学过程以及外源性物质通过乳汁的传递,尽管也可能通过其他途径(如吸入)发生直接暴露。测量乳汁中的外源性物质以及评估暴露后或效应的生物标志物可以确认或表征新生儿暴露情况。纳入这些及其他决定因素的基于生理学的药代动力学和药效学模型可以估计子宫内或新生儿暴露后的组织剂量和生物学反应。这些模型可以表征剂量 - 反应关系,并改善从动物研究到人类的结果外推。此外,药理学数据使实验者能够确定对测试化学品的暴露是否充分、暴露是否发生在神经系统发育的关键时期、暴露途径和持续时间是否合适,以及发育神经毒性是否可以与外源性物质的直接作用区分开来。