Cleuren Audrey, Molema Grietje
Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.
Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
Front Med (Lausanne). 2023 Nov 9;10:1252021. doi: 10.3389/fmed.2023.1252021. eCollection 2023.
In the last decades, it has become evident that endothelial cells (ECs) in the microvasculature play an important role in the pathophysiology of sepsis-associated multiple organ dysfunction syndrome (MODS). Studies on how ECs orchestrate leukocyte recruitment, control microvascular integrity and permeability, and regulate the haemostatic balance have provided a wealth of knowledge and potential molecular targets that could be considered for pharmacological intervention in sepsis. Yet, this information has not been translated into effective treatments. As MODS affects specific vascular beds, (organotypic) endothelial heterogeneity may be an important contributing factor to this lack of success. On the other hand, given the involvement of ECs in sepsis, this heterogeneity could also be leveraged for therapeutic gain to target specific sites of the vasculature given its full accessibility to drugs. In this review, we describe current knowledge that defines heterogeneity of organ-specific microvascular ECs at the molecular level and elaborate on studies that have reported EC responses across organ systems in sepsis patients and animal models of sepsis. We discuss hypothesis-driven, single-molecule studies that have formed the basis of our understanding of endothelial cell engagement in sepsis pathophysiology, and include recent studies employing high-throughput technologies. The latter deliver comprehensive data sets to describe molecular signatures for organotypic ECs that could lead to new hypotheses and form the foundation for rational pharmacological intervention and biomarker panel development. Particularly results from single cell RNA sequencing and spatial transcriptomics studies are eagerly awaited as they are expected to unveil the full spatiotemporal signature of EC responses to sepsis. With increasing awareness of the existence of distinct sepsis subphenotypes, and the need to develop new drug regimen and companion diagnostics, a better understanding of the molecular pathways exploited by ECs in sepsis pathophysiology will be a cornerstone to halt the detrimental processes that lead to MODS.
在过去几十年中,微血管中的内皮细胞(ECs)在脓毒症相关多器官功能障碍综合征(MODS)的病理生理学中发挥重要作用已变得显而易见。关于内皮细胞如何协调白细胞募集、控制微血管完整性和通透性以及调节止血平衡的研究提供了丰富的知识和潜在的分子靶点,这些靶点可被考虑用于脓毒症的药物干预。然而,这些信息尚未转化为有效的治疗方法。由于MODS影响特定的血管床,(器官特异性)内皮细胞异质性可能是导致这种治疗失败的一个重要因素。另一方面,鉴于内皮细胞参与脓毒症,考虑到血管系统对药物具有完全可及性,这种异质性也可被用于治疗目的,以靶向脉管系统的特定部位。在这篇综述中,我们描述了在分子水平上定义器官特异性微血管内皮细胞异质性的现有知识,并详细阐述了关于脓毒症患者和脓毒症动物模型中跨器官系统内皮细胞反应的研究。我们讨论了基于假设的单分子研究,这些研究构成了我们理解内皮细胞参与脓毒症病理生理学的基础,并纳入了采用高通量技术的最新研究。后者提供了全面的数据集来描述器官特异性内皮细胞的分子特征,这可能会产生新的假设,并为合理的药物干预和生物标志物组的开发奠定基础。特别期待单细胞RNA测序和空间转录组学研究的结果,因为它们有望揭示内皮细胞对脓毒症反应的完整时空特征。随着对不同脓毒症亚表型存在的认识不断提高,以及开发新的药物方案和伴随诊断的需求,更好地理解内皮细胞在脓毒症病理生理学中利用的分子途径将是阻止导致MODS的有害过程的基石。