Suppr超能文献

基本微阵列分析:分组与特征约简。

Basic microarray analysis: grouping and feature reduction.

作者信息

Raychaudhuri S, Sutphin P D, Chang J T, Altman R B

机构信息

Stanford Medical Informatics, Department of Medicine, Stanford University, 251 Campus Drive, MSOB X-215, Stanford, CA 94305-5479, USA.

出版信息

Trends Biotechnol. 2001 May;19(5):189-93. doi: 10.1016/s0167-7799(01)01599-2.

Abstract

DNA microarray technologies are useful for addressing a broad range of biological problems - including the measurement of mRNA expression levels in target cells. These studies typically produce large data sets that contain measurements on thousands of genes under hundreds of conditions. There is a critical need to summarize this data and to pick out the important details. The most common activities, therefore, are to group together microarray data and to reduce the number of features. Both of these activities can be done using only the raw microarray data (unsupervised methods) or using external information that provides labels for the microarray data (supervised methods). We briefly review supervised and unsupervised methods for grouping and reducing data in the context of a publicly available suite of tools called CLEAVER, and illustrate their application on a representative data set collected to study lymphoma.

摘要

DNA微阵列技术对于解决广泛的生物学问题很有用,包括测量靶细胞中的mRNA表达水平。这些研究通常会产生大型数据集,其中包含在数百种条件下对数千个基因的测量数据。迫切需要对这些数据进行总结并挑选出重要细节。因此,最常见的操作是将微阵列数据分组并减少特征数量。这两种操作既可以仅使用原始微阵列数据(无监督方法)来完成,也可以使用为微阵列数据提供标签的外部信息(有监督方法)来完成。我们在一套名为CLEAVER的公开可用工具的背景下,简要回顾用于数据分组和降维的有监督和无监督方法,并说明它们在为研究淋巴瘤而收集的代表性数据集上的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验