Suppr超能文献

评估哮喘药物处方质量的指标比较。

Comparison of indicators assessing the quality of drug prescribing for asthma.

作者信息

Veninga C C, Denig P, Pont L G, Haaijer-Ruskamp F M

机构信息

Northern Centre for Healthcare Research, Department of Clinical Pharmacology, University of Groningen, The Netherlands.

出版信息

Health Serv Res. 2001 Apr;36(1 Pt 1):143-61.

Abstract

OBJECTIVE

To compare different indicators for assessing the quality of drug prescribing and establish their agreement in identifying doctors who may not adhere to treatment guidelines.

DATA SOURCES/STUDY SETTING: Data from 181 general practitioners (GPs) from The Netherlands. The case of asthma is used as an example because, in this area, different quality indicators exist whose validity is questioned. The study is part of the European Drug Education Project.

STUDY DESIGN

Spearman rank correlations were assessed among the GPs' scores on self-report instruments, aggregated prescribing indicators, and individualized prescribing indicators. Kappa values were calculated as agreement measures for identifying low adherence to the guidelines.

DATA COLLECTION

Prescribing data from GPs were collected through pharmacies, public health insurance companies, or computerized GP databases. Two self-report instruments were mailed to the GPs. The GPs first received a questionnaire assessing their competence regarding the treatment of asthma patients. Three months later they received a series of 16 written asthma cases asking for their intended treatment for each case.

PRINCIPAL FINDINGS

Correlations between scores based on self-report instruments and indicators based on actual prescribing data were mostly nonsignificant and varied between 0 and 0.21. GPs identified as not adhering to the guidelines by the prescribing indicators often had high scores on the self-report instruments. Correlations between 0.20 and 0.55 were observed among indicators based on aggregated prescribing data and those based on individualized data. The agreement for identifying low adherence was small, with kappa values ranging from 0.19 to 0.30.

CONCLUSIONS

Indicators based on self-report instruments seem to overestimate guideline adherence. Indicators assessing prescribing quality at an aggregated level give clearly different results, as compared to indicators evaluating prescribing data on an individual patient level. Caution is needed when using such prescribing indicators to identify low adherence to guidelines. Further validation studies using a gold standard comparison are needed to define the best possible indicator.

摘要

目的

比较评估药物处方质量的不同指标,并确定它们在识别可能未遵循治疗指南的医生方面的一致性。

数据来源/研究背景:来自荷兰的181名全科医生(GP)的数据。以哮喘病例为例,因为在该领域存在不同的质量指标,其有效性受到质疑。该研究是欧洲药物教育项目的一部分。

研究设计

评估全科医生在自我报告工具、汇总处方指标和个体化处方指标上的得分之间的斯皮尔曼等级相关性。计算卡帕值作为识别低指南遵循率的一致性度量。

数据收集

通过药房、公共健康保险公司或计算机化的全科医生数据库收集全科医生的处方数据。向全科医生邮寄了两份自我报告工具。全科医生首先收到一份评估其治疗哮喘患者能力的问卷。三个月后,他们收到一系列16个书面哮喘病例,要求他们针对每个病例给出预期的治疗方案。

主要发现

基于自我报告工具的得分与基于实际处方数据的指标之间的相关性大多不显著,范围在0至0.21之间。被处方指标识别为未遵循指南的全科医生在自我报告工具上的得分往往较高。基于汇总处方数据的指标与基于个体化数据的指标之间的相关性在0.20至0.55之间。识别低遵循率的一致性较小,卡帕值范围为0.19至0.30。

结论

基于自我报告工具的指标似乎高估了指南遵循率。与评估个体患者层面处方数据的指标相比,汇总层面评估处方质量的指标给出的结果明显不同。在使用此类处方指标识别低指南遵循率时需要谨慎。需要使用金标准比较进行进一步的验证研究,以确定最佳可能指标。

相似文献

2
Is it possible to measure prescribing quality using only prescription data?仅使用处方数据来衡量处方质量是否可行?
Basic Clin Pharmacol Toxicol. 2006 Mar;98(3):314-9. doi: 10.1111/j.1742-7843.2006.pto_411.x.

引用本文的文献

7
Factor analysis improves the selection of prescribing indicators.因子分析有助于优化处方指标的选择。
Eur J Clin Pharmacol. 2006 Nov;62(11):953-8. doi: 10.1007/s00228-006-0196-x. Epub 2006 Oct 6.
10
Validity of performance indicators for assessing prescribing quality: the case of asthma.
Eur J Clin Pharmacol. 2004 Jan;59(11):833-40. doi: 10.1007/s00228-003-0696-x. Epub 2003 Nov 18.

本文引用的文献

6
Implementing guidelines in general practice care.在全科医疗中实施指南。
Qual Health Care. 1992 Sep;1(3):184-91. doi: 10.1136/qshc.1.3.184.
10
EUR-ASSESS Project Subgroup Report on Dissemination and Impact.
Int J Technol Assess Health Care. 1997 Spring;13(2):220-86. doi: 10.1017/s0266462300010370.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验