Utsugi A, Kumagai T
National Institute of Bioscience and Human-Technology, Tsukuba 305-8566, Japan.
Neural Comput. 2001 May;13(5):993-1002. doi: 10.1162/08997660151134299.
For Bayesian inference on the mixture of factor analyzers, natural conjugate priors on the parameters are introduced, and then a Gibbs sampler that generates parameter samples following the posterior is constructed. In addition, a deterministic estimation algorithm is derived by taking modes instead of samples from the conditional posteriors used in the Gibbs sampler. This is regarded as a maximum a posteriori estimation algorithm with hyperparameter search. The behaviors of the Gibbs sampler and the deterministic algorithm are compared on a simulation experiment.
对于因子分析器混合模型的贝叶斯推断,引入了参数的自然共轭先验,然后构建了一个吉布斯采样器,该采样器根据后验分布生成参数样本。此外,通过取模态而非从吉布斯采样器中使用的条件后验分布中采样,推导出一种确定性估计算法。这被视为一种带有超参数搜索的最大后验估计算法。在一个模拟实验中比较了吉布斯采样器和确定性算法的性能。