Suppr超能文献

乙二醛酶I简史以及我们对金属离子依赖性酶催化异构化的了解。

Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations.

作者信息

Creighton D J, Hamilton D S

机构信息

Department of Chemistry and Biochemistry, University of Maryland, Baltimore 21250, USA.

出版信息

Arch Biochem Biophys. 2001 Mar 1;387(1):1-10. doi: 10.1006/abbi.2000.2253.

Abstract

Glyoxalase I, a member of the metalloglutathione (GSH) transferase superfamily, plays a critical detoxification role in cells by catalyzing the conversion of cytotoxic methylglyoxal (as the diastereomeric GSH-thiohemiacetals) to S-D-lactoylglutathione via a 1,2-hydrogen transfer. The mechanism-of-action of this Zn2+-metalloenzyme has been the subject of considerable controversy over the past 50 years. Key issues relate to the role of the active-site metal ion in catalysis and how the enzyme is able to use directly both diastereomeric thiohemiacetals as substrates. The results of recent X-ray crystallographic measurements on the enzyme in complex with a transition state analogue and site-directed mutagenesis studies now strongly support a base-mediated, proton-transfer mechanism in which the bound diastereomeric substrates undergo catalytic interconversion before the 1S-diastereomer goes to product via a Zn2+-coordinated, cis-enediolate intermediate. Comparisons with chemical model systems suggest that Zn2+-coordination of thiohemiacetal substrate will dramatically increase the thermodynamic and kinetic acidity of the C1-H bond of substrate. In the human enzyme, the carboxyl group of Glu (172) is well positioned to catalyze a suprafacial proton transfer between the adjacent carbons of substrate. The Zn2+-coordinated carboxyl group of Glu(99) is a reasonable candidate to catalyze proton transfer between the Zn2+-coordinated oxygen atoms of the enediolate intermediate. Other Zn2+ metalloenzymes appear to use similar reaction mechanisms to facilitate proton transfers.

摘要

乙二醛酶I是金属谷胱甘肽(GSH)转移酶超家族的成员之一,通过催化细胞毒性甲基乙二醛(作为非对映体GSH-硫代半缩醛)经1,2-氢转移转化为S-D-乳酰谷胱甘肽,在细胞中发挥关键的解毒作用。在过去50年里,这种锌离子金属酶的作用机制一直是相当有争议的话题。关键问题涉及活性位点金属离子在催化中的作用,以及该酶如何能够直接将两种非对映体硫代半缩醛都用作底物。最近关于该酶与过渡态类似物复合物的X射线晶体学测量结果以及定点诱变研究,现在有力地支持了一种碱介导的质子转移机制,其中结合的非对映体底物在1S-非对映体通过锌离子配位的顺式烯二醇中间体生成产物之前经历催化互变。与化学模型系统的比较表明,硫代半缩醛底物的锌离子配位将显著增加底物C1-H键的热力学和动力学酸度。在人类酶中,Glu(172)的羧基位置良好,能够催化底物相邻碳原子之间的超面质子转移。Glu(99)的锌离子配位羧基是催化烯二醇中间体锌离子配位氧原子之间质子转移的合理候选者。其他锌离子金属酶似乎使用类似的反应机制来促进质子转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验