Suppr超能文献

线粒体乙二醛酶II的结构研究

Structural studies on a mitochondrial glyoxalase II.

作者信息

Marasinghe Gishanthi P K, Sander Ian M, Bennett Brian, Periyannan Gopalraj, Yang Ke-Wu, Makaroff Christopher A, Crowder Michael W

机构信息

Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA.

出版信息

J Biol Chem. 2005 Dec 9;280(49):40668-75. doi: 10.1074/jbc.M509748200. Epub 2005 Oct 14.

Abstract

Glyoxalase 2 is a beta-lactamase fold-containing enzyme that appears to be involved with cellular chemical detoxification. Although the cytoplasmic isozyme has been characterized from several organisms, essentially nothing is known about the mitochondrial proteins. As a first step in understanding the structure and function of mitochondrial glyoxalase 2 enzymes, a mitochondrial isozyme (GLX2-5) from Arabidopsis thaliana was cloned, overexpressed, purified, and characterized using metal analyses, EPR and (1)H NMR spectroscopies, and x-ray crystallography. The recombinant enzyme was shown to bind 1.04 +/- 0.15 eq of iron and 1.31 +/- 0.05 eq of Zn(II) and to exhibit k(cat) and K(m) values of 129 +/- 10 s(-1) and 391 +/- 48 microm, respectively, when using S-d-lactoylglutathione as the substrate. EPR spectra revealed that recombinant GLX2-5 contains multiple metal centers, including a predominant Fe(III)Z-n(II) center and an anti-ferromagnetically coupled Fe(III)Fe(II) center. Unlike cytosolic glyoxalase 2 from A. thaliana, GLX2-5 does not appear to specifically bind manganese. (1)H NMR spectra revealed the presence of at least eight paramagnetically shifted resonances that arise from protons in close proximity to a Fe(III)Fe(II) center. Five of these resonances arose from solvent-exchangeable protons, and four of these have been assigned to NH protons on metal-bound histidines. A 1.74-A resolution crystal structure of the enzyme revealed that although GLX2-5 shares a number of structural features with human GLX2, several important differences exist. These data demonstrate that mitochondrial glyoxalase 2 can accommodate a number of different metal centers and that the predominant metal center is Fe(III)Zn(II).

摘要

乙二醛酶2是一种含有β-内酰胺酶折叠结构的酶,似乎参与细胞的化学解毒过程。尽管已经从多种生物中鉴定出了细胞质同工酶,但对于线粒体蛋白却几乎一无所知。作为了解线粒体乙二醛酶2结构和功能的第一步,克隆、过量表达、纯化了拟南芥的一种线粒体同工酶(GLX2-5),并使用金属分析、电子顺磁共振(EPR)和核磁共振氢谱(1H NMR)以及X射线晶体学对其进行了表征。结果表明,重组酶结合了1.04±0.15当量的铁和1.31±0.05当量的锌(II),以S-d-乳酰谷胱甘肽为底物时,其催化常数(kcat)和米氏常数(Km)分别为129±10 s-1和391±48 μM。EPR光谱显示重组GLX2-5含有多个金属中心,包括一个主要的铁(III)锌(II)中心和一个反铁磁耦合的铁(III)铁(II)中心。与拟南芥的细胞质乙二醛酶2不同,GLX2-5似乎不特异性结合锰。1H NMR光谱显示存在至少八个由紧邻铁(III)铁(II)中心的质子引起的顺磁位移共振峰。其中五个共振峰来自可与溶剂交换的质子,其中四个已被确定为与金属结合的组氨酸上的NH质子。该酶的1.74埃分辨率晶体结构表明,尽管GLX2-5与人类GLX2有许多结构特征相同,但也存在一些重要差异。这些数据表明线粒体乙二醛酶2可以容纳多种不同的金属中心,且主要的金属中心是铁(III)锌(II)。

相似文献

1
Structural studies on a mitochondrial glyoxalase II.
J Biol Chem. 2005 Dec 9;280(49):40668-75. doi: 10.1074/jbc.M509748200. Epub 2005 Oct 14.
4
Human glyoxalase II contains an Fe(II)Zn(II) center but is active as a mononuclear Zn(II) enzyme.
Biochemistry. 2009 Jun 16;48(23):5426-34. doi: 10.1021/bi9001375.
5
Converting GLX2-1 into an active glyoxalase II.
Biochemistry. 2010 Sep 21;49(37):8228-36. doi: 10.1021/bi1010865.
7
Arabidopsis thaliana mitochondrial glyoxalase 2-1 exhibits beta-lactamase activity.
Biochemistry. 2009 Sep 15;48(36):8491-3. doi: 10.1021/bi9010539.
8
Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity.
FEBS Lett. 1997 Dec 1;418(3):351-4. doi: 10.1016/s0014-5793(97)01416-6.
9
The metal ion requirements of Arabidopsis thaliana Glx2-2 for catalytic activity.
J Biol Inorg Chem. 2010 Feb;15(2):249-58. doi: 10.1007/s00775-009-0593-6. Epub 2009 Oct 16.
10
Spectroscopic studies on Arabidopsis ETHE1, a glyoxalase II-like protein.
J Inorg Biochem. 2008 Sep;102(9):1825-30. doi: 10.1016/j.jinorgbio.2008.06.003. Epub 2008 Jun 13.

引用本文的文献

2
and encoding glyoxalase II improve tolerance of sp. PCC 6803 to methylglyoxal- and ethanol- induced oxidative stress by glyoxalase pathway.
Appl Environ Microbiol. 2024 Nov 20;90(11):e0056424. doi: 10.1128/aem.00564-24. Epub 2024 Oct 21.
4
Transition Metal Mediated Hydrolysis of C-S Bonds: An Overview of a New Reaction Strategy.
ACS Org Inorg Au. 2023 Sep 20;3(6):332-349. doi: 10.1021/acsorginorgau.3c00038. eCollection 2023 Dec 6.
7
8
Viridiplantae-specific GLXI and GLXII isoforms co-evolved and detoxify glucosone in planta.
Plant Physiol. 2023 Feb 12;191(2):1214-1233. doi: 10.1093/plphys/kiac526.
9
Glyoxalase 2: Towards a Broader View of the Second Player of the Glyoxalase System.
Antioxidants (Basel). 2022 Oct 28;11(11):2131. doi: 10.3390/antiox11112131.
10
Thioesterase enzyme families: Functions, structures, and mechanisms.
Protein Sci. 2022 Mar;31(3):652-676. doi: 10.1002/pro.4263. Epub 2022 Jan 4.

本文引用的文献

1
Role for glyoxalase I in Alzheimer's disease.
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7687-92. doi: 10.1073/pnas.0402338101. Epub 2004 May 5.
2
The Human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II.
J Biol Chem. 2004 Jul 2;279(27):28653-61. doi: 10.1074/jbc.M403470200. Epub 2004 Apr 26.
4
Glyoxalase II of African trypanosomes is trypanothione-dependent.
J Biol Chem. 2004 May 21;279(21):22209-17. doi: 10.1074/jbc.M401240200. Epub 2004 Feb 19.
5
Glyoxalase I inhibitors in cancer chemotherapy.
Biochem Soc Trans. 2003 Dec;31(Pt 6):1378-82. doi: 10.1042/bst0311378.
7
ElaC encodes a novel binuclear zinc phosphodiesterase.
J Biol Chem. 2002 Aug 9;277(32):29078-85. doi: 10.1074/jbc.M112047200. Epub 2002 May 23.
8
Active site structure and mechanism of human glyoxalase I-an ab initio theoretical study.
J Am Chem Soc. 2001 Jul 25;123(29):6973-82. doi: 10.1021/ja0105966.
9
Expression of glyoxalase I and II in normal and breast cancer tissues.
Breast Cancer Res Treat. 2001 Mar;66(1):67-72. doi: 10.1023/a:1010632919129.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验