Suppr超能文献

二棕榈酰磷脂酰胆碱/二月桂酰磷脂酰胆碱/胆固醇的三元相图:胆固醇驱动的纳米级结构域形成

Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol.

作者信息

Feigenson G W, Buboltz J T

机构信息

Field of Biophysics, Biotechnology Building, Cornell University, Ithaca, New York 14853, USA.

出版信息

Biophys J. 2001 Jun;80(6):2775-88. doi: 10.1016/S0006-3495(01)76245-5.

Abstract

A ternary phase diagram is proposed for the hydrated lamellar lipid mixture dipalmitoylphosphatidylcholine/dilauroylphosphatidylcholine/cholesterol (DPPC/DLPC/cholesterol) at room temperature. The entire composition space has been thoroughly mapped by complementary experimental techniques, revealing interesting phase behavior that has not been previously described. Confocal fluorescence microscopy shows a regime of coexisting DPPC-rich ordered and DLPC-rich fluid lamellar phases, having an upper boundary at apparently constant cholesterol mole fraction chi(chol) approximately 0.16. Fluorescence resonance energy transfer experiments confirm the identification and extent of this two-phase regime and, furthermore, reveal a 1-phase regime between chi(chol) approximately 0.16 and 0.25, consisting of ordered and fluid nanoscopic domains. Dipyrene-PC excimer/monomer measurements confirm the new regime between chi(chol) approximately 0.16 and 0.25 and also show that rigidly ordered phases seem to disappear around chi(chol) approximately 0.25. This study should be considered as a step toward a more complete understanding of lateral heterogeneity within biomembranes. Cholesterol may play a role in domain separation on the nanometer scale.

摘要

本文提出了室温下水合层状脂质混合物二棕榈酰磷脂酰胆碱/二月桂酰磷脂酰胆碱/胆固醇(DPPC/DLPC/胆固醇)的三元相图。通过互补实验技术对整个成分空间进行了全面测绘,揭示了此前未描述过的有趣相行为。共聚焦荧光显微镜显示了富含DPPC的有序相和富含DLPC的流体层状相共存的区域,其上限在胆固醇摩尔分数χ(chol)约为0.16时明显保持恒定。荧光共振能量转移实验证实了这一两相区域的识别和范围,此外,还揭示了χ(chol)约为0.16至0.25之间的单相区域,该区域由有序和流体纳米域组成。二芘-PC准分子/单体测量证实了χ(chol)约为0.16至0.25之间的新区域,还表明刚性有序相似乎在χ(chol)约为0.25时消失。本研究应被视为朝着更全面理解生物膜内横向异质性迈出的一步。胆固醇可能在纳米尺度的域分离中发挥作用。

相似文献

2
Acyl-chain mismatch driven superlattice arrangements in DPPC/DLPC/cholesterol bilayers.
J Phys Chem B. 2010 Aug 12;114(31):10105-13. doi: 10.1021/jp105104f.
3
Nanoscopic lipid domain dynamics revealed by atomic force microscopy.
Biophys J. 2003 Apr;84(4):2609-18. doi: 10.1016/S0006-3495(03)75066-8.
4
Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.
Biochim Biophys Acta. 2013 Aug;1828(8):1889-98. doi: 10.1016/j.bbamem.2013.03.028. Epub 2013 Apr 6.
6
Heterogeneous molecular distribution in supported multicomponent lipid bilayers.
Langmuir. 2004 Feb 3;20(3):614-8. doi: 10.1021/la0355388.
8
Measuring raft size as a function of membrane composition in PC-based systems: Part II--ternary systems.
Langmuir. 2007 Oct 23;23(22):11188-96. doi: 10.1021/la7006342. Epub 2007 Sep 22.
9
Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
Biochim Biophys Acta. 2016 Jan;1858(1):153-61. doi: 10.1016/j.bbamem.2015.10.016. Epub 2015 Oct 23.
10
Detection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy.
Biochim Biophys Acta. 2005 Mar 1;1668(2):158-63. doi: 10.1016/j.bbamem.2004.11.016. Epub 2005 Jan 19.

引用本文的文献

1
The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes.
Membranes (Basel). 2025 Mar 3;15(3):79. doi: 10.3390/membranes15030079.
3
Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?
Membranes (Basel). 2025 Jan 1;15(1):6. doi: 10.3390/membranes15010006.
4
Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling.
Int J Mol Sci. 2023 Jul 7;24(13):11226. doi: 10.3390/ijms241311226.
6
Biophysical studies of lipid nanodomains using different physical characterization techniques.
Biophys J. 2023 Mar 21;122(6):931-949. doi: 10.1016/j.bpj.2023.01.024. Epub 2023 Jan 25.
7
Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease.
Adv Exp Med Biol. 2023;1436:87-108. doi: 10.1007/5584_2022_759.
8
Optimization of cryo-electron microscopy for quantitative analysis of lipid bilayers.
Biophys Rep (N Y). 2022 Dec 10;3(1):100090. doi: 10.1016/j.bpr.2022.100090. eCollection 2023 Mar 8.
9
Structural determinants of REMORIN nanodomain formation in anionic membranes.
Biophys J. 2023 Jun 6;122(11):2192-2202. doi: 10.1016/j.bpj.2022.12.035. Epub 2022 Dec 28.
10
Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu.
Front Mol Biosci. 2022 Nov 28;9:1014659. doi: 10.3389/fmolb.2022.1014659. eCollection 2022.

本文引用的文献

1
Lipid rafts reconstituted in model membranes.
Biophys J. 2001 Mar;80(3):1417-28. doi: 10.1016/S0006-3495(01)76114-0.
2
Cholesterol in signal transduction.
Curr Opin Cell Biol. 2000 Apr;12(2):193-203. doi: 10.1016/s0955-0674(99)00076-9.
3
Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells.
J Cell Biol. 2000 Mar 6;148(5):997-1008. doi: 10.1083/jcb.148.5.997.
7
Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy.
Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8461-6. doi: 10.1073/pnas.96.15.8461.
9
Looking at lipid rafts?
Trends Cell Biol. 1999 Mar;9(3):87-91. doi: 10.1016/s0962-8924(98)01495-0.
10
A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers.
Biophys J. 1999 Apr;76(4):2142-57. doi: 10.1016/S0006-3495(99)77369-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验