Daley C J, Holm R H
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Inorg Chem. 2001 Jun 4;40(12):2785-93. doi: 10.1021/ic010039k.
The first step in catalysis by a class of iron-sulfur enzymes that includes biotin synthase is the one-electron reductive cleavage of the obligatory cofactor S-adenosylmethionine by an Fe(4)S(4) cluster to afford methionine and the deoxyadenosyl radical (DOA*). To provide detailed information about the reactions of sulfonium ions with Fe(4)S(4) clusters, the analogue reaction systems Fe(4)S(4)(SR')(4)(-)(,3)(-)/PhMeSCH(2)R (R' = Et (4, 6), Ph (5, 7); R = H (8), COPh (9), p-C(6)H(4)CN (10)) were examined by (1)H NMR spectroscopy. Sulfonium ions 8-10 react completely with oxidized clusters 4 and 5 to afford PhSMe and R'SCH(2)R in equimolar amounts as a result of electrophilic attack by the sulfonium ion on cluster thiolate ligands. Reactions are also complete with reduced clusters 6 and 7 but afford, depending on the substrate, the additional products RCH(3) (R = PhCO, p-C(6)H(4)CN) and the ylid PhMeS=CHR or (p-NCC(6)H(4)CH(2))(2). Redox potentials of 9 and 10 allow electron transfer from 6 or 7. The reaction systems 6/9,10 and 7/9,10 exhibit two reaction pathways, reductive cleavage and electrophilic attack, in an ca. 4:1 ratio inferred from product distribution. Cleavage is a two-electron process and, for example in the system 6/9, is described by the overall reaction 2Fe(4)S(4)(SR')(4)(-) + 2PhMeSCH(2)R --> 2Fe(4)S(4)(SR')(4)(-) + PhSMe + RCH(3) + PhMeS=CHR. This and other reactions may be summarized as PhMeSCH(2)R + 2e(-) + H(+) --> PhSMe + RCH(3); proposed reaction sequences parallel those for electrochemical reduction of sulfonium ions. This work demonstrates the intrinsic ability of Fe(4)S(4) clusters with appropriate redox potentials to reductively cleave sulfonium substrates in overall two-electron reactions. The analogue systems differ from the enzymes in that DOA* is generated in a one-electron reduction and is sufficiently stabilized within the protein matrix to abstract a hydrogen atom from substrate or an amino acid residue in a succeeding step. In the present systems, the radical produced in the initial step of the reaction sequence, Fe(4)S(4)(SR')(4)(-) + PhMeSCH(2)R --> Fe(4)S(4)(SR')(4)(-) + PhSMe + RCH(2)*, is not stabilized and is quenched by reduction and protonation.
一类含铁硫酶(包括生物素合酶)催化作用的第一步是,通过一个Fe(4)S(4)簇将必需的辅因子S-腺苷甲硫氨酸进行单电子还原裂解,生成甲硫氨酸和脱氧腺苷自由基(DOA*)。为了提供关于锍离子与[Fe(4)S(4)](2 +,+)簇反应的详细信息,通过(1)H NMR光谱研究了类似反应体系Fe(4)S(4)(SR')(4)( -,(3)( -)/PhMeSCH(2)R(R' = Et (4, 6),Ph (5, 7);R = H (8),COPh (9),p-C(6)H(4)CN (10))。由于锍离子对簇硫醇盐配体的亲电攻击,锍离子8 - 10与氧化态簇4和5完全反应,生成等摩尔量的PhSMe和R'SCH(2)R。与还原态簇6和7的反应也完全进行,但根据底物不同,会生成额外产物RCH(3)(R = PhCO,p-C(6)H(4)CN)以及叶立德PhMeS = CHR或(p-NCC(6)H(4)CH(2))(2)。9和10的氧化还原电位允许电子从6或7转移。反应体系6/9,10和7/9,10呈现出两种反应途径,即还原裂解和亲电攻击,从产物分布推断其比例约为4:1。裂解是一个双电子过程,例如在体系6/9中,总反应为2Fe(4)S(4)(SR')(4)( -)+ 2PhMeSCH(2)R --> 2Fe(4)S(4)(SR')(4)( -)+ PhSMe + RCH(3)+ PhMeS = CHR。这个反应及其他反应可总结为PhMeSCH(2)R + 2e(-)+ H(+) --> PhSMe + RCH(3);所提出的反应序列与锍离子的电化学还原反应序列相似。这项工作证明了具有适当氧化还原电位的Fe(4)S(4)簇在整体双电子反应中对锍底物进行还原裂解的内在能力。类似体系与酶的不同之处在于,DOA是通过单电子还原产生的,并且在蛋白质基质中足够稳定,能够在后续步骤中从底物或氨基酸残基中夺取一个氢原子。在当前体系中,反应序列第一步产生的自由基,即Fe(4)S(4)(SR')(4)( -)+ PhMeSCH(2)R --> Fe(4)S(4)(SR')(4)( -)+ PhSMe + RCH(2),不稳定,会通过还原和质子化被淬灭。