从多模态磁共振成像数据到基于模型的预测的有效工作流程。

Effective workflow from multimodal MRI data to model-based prediction.

作者信息

Jung Kyesam, Wischnewski Kevin J, Eickhoff Simon B, Popovych Oleksandr V

机构信息

Institute of Neurosciences and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.

Institute of Systems Neuroscience, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

出版信息

Sci Rep. 2025 Jun 20;15(1):20126. doi: 10.1038/s41598-025-04511-5.

Abstract

Predicting human behavior from neuroimaging data remains a complex challenge in neuroscience. To address this, we propose a systematic and multi-faceted framework that incorporates a model-based workflow using dynamical brain models. This approach utilizes multi-modal MRI data for brain modeling and applies the optimized modeling outcome to machine learning. We demonstrate the performance of such an approach through several examples such as sex classification and prediction of cognition or personality traits. We in particular show that incorporating the simulated data into machine learning can significantly improve the prediction performance compared to using empirical features alone. These results suggest considering the output of the dynamical brain models as an additional neuroimaging data modality that complements empirical data by capturing brain features that are difficult to measure directly. The discussed model-based workflow can offer a promising avenue for investigating and understanding inter-individual variability in brain-behavior relationships and enhancing prediction performance in neuroimaging research.

摘要

从神经影像数据预测人类行为仍然是神经科学中一项复杂的挑战。为了解决这一问题,我们提出了一个系统的、多方面的框架,该框架纳入了使用动态脑模型的基于模型的工作流程。这种方法利用多模态MRI数据进行脑建模,并将优化后的建模结果应用于机器学习。我们通过几个例子展示了这种方法的性能,如性别分类以及认知或人格特质的预测。我们特别表明,与仅使用经验特征相比,将模拟数据纳入机器学习可以显著提高预测性能。这些结果表明,将动态脑模型的输出视为一种额外的神经影像数据模态,通过捕捉难以直接测量的脑特征来补充经验数据。所讨论的基于模型的工作流程可以为研究和理解脑-行为关系中的个体间差异以及提高神经影像研究中的预测性能提供一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c88/12181387/00bbf32bb602/41598_2025_4511_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索