Suppr超能文献

两种共病测量方法在有无既往住院信息情况下的性能比较。

Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations.

作者信息

Stukenborg G J, Wagner D P, Connors A F

机构信息

Division of Health Services Research and Outcomes Evaluation, Department of Health Evaluation Sciences, University of Virginia School of Medicine, Charlottesville, Virginia. 22908-0821, USA.

出版信息

Med Care. 2001 Jul;39(7):727-39. doi: 10.1097/00005650-200107000-00009.

Abstract

OBJECTIVES

This study compares the performance of two comorbidity risk adjustment methods (the Deyo et al adaptation of the Charlson index and the Elixhauser et al method) in five groups of California hospital patients with common reasons for hospitalization, and assesses the contribution to model performance made by information drawn from prior hospital admissions.

METHODS

California hospital discharge abstract data for the calendar years 1994 through 1997 were used to create a longitudinal data set for patients in the five disease groups. Eleven logistic regression models were estimated to predict the risk of in-hospital death for patients in each group, with both comorbidity risk adjustment methods applied to patient information available from only the index hospitalization, and to information available from both the index and prior hospitalizations.

RESULTS

For every comparison made, the level of statistical performance (area under the receiver operating characteristics curve) demonstrated by models using the Elixhauser et al method was superior to that of models using the Deyo et al adaptation method. Although most patients have information available from prior hospital admissions, this additional information yields only small improvements in the performance of models using either comorbidity risk adjustment method.

CONCLUSIONS

Better discrimination is achieved with the Elixhauser et al method using only information from the index hospitalization than is achieved with the Deyo et al adaptation using information from all identified hospital admissions. Both comorbidity risk adjustment methods achieve their best performance when information from the index hospitalization and prior admissions is separated into independent indicators of comorbid illness.

摘要

目的

本研究比较了两种合并症风险调整方法(Deyo等人对Charlson指数的改编方法和Elixhauser等人的方法)在五组因常见原因住院的加利福尼亚医院患者中的表现,并评估了来自既往住院记录的信息对模型表现的贡献。

方法

使用1994年至1997年加利福尼亚医院出院摘要数据,为五个疾病组的患者创建一个纵向数据集。估计了11个逻辑回归模型,以预测每组患者的院内死亡风险,两种合并症风险调整方法分别应用于仅来自本次住院的患者信息,以及来自本次住院和既往住院的信息。

结果

对于每一次比较,使用Elixhauser等人方法的模型所展示的统计表现水平(受试者操作特征曲线下面积)均优于使用Deyo等人改编方法的模型。尽管大多数患者有既往住院记录的信息,但这些额外信息仅使使用任何一种合并症风险调整方法的模型表现有小幅改善。

结论

仅使用本次住院信息的Elixhauser等人方法比使用所有已识别住院记录信息的Deyo等人改编方法能实现更好的区分度。当将本次住院和既往住院的信息分离为合并症的独立指标时,两种合并症风险调整方法均能达到最佳表现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验