Weber S, Richter G, Schleicher E, Bacher A, Möbius K, Kay C W
Institute of Experimental Physics, Free University Berlin, 14195 Berlin, Germany.
Biophys J. 2001 Aug;81(2):1195-204. doi: 10.1016/S0006-3495(01)75777-3.
Structural changes in Escherichia coli DNA photolyase induced by binding of a (cis,syn)-cyclobutane pyrimidine dimer (CPD) are studied by continuous-wave electron paramagnetic resonance and electron-nuclear double resonance spectroscopies, using the flavin adenine dinucleotide (FAD) cofactor in its neutral radical form as a naturally occurring electron spin probe. The electron paramagnetic resonance/electron-nuclear double resonance spectral changes are consistent with a large distance (> or =0.6 nm) between the CPD lesion and the 7,8-dimethyl isoalloxazine ring of FAD, as was predicted by recent model calculations on photolyase enzyme-substrate complexes. Small shifts of the isotropic proton hyperfine coupling constants within the FAD's isoalloxazine moiety can be understood in terms of the cofactor binding site becoming more nonpolar because of the displacement of water molecules upon CPD docking to the enzyme. Molecular orbital calculations of hyperfine couplings using density functional theory, in conjunction with an isodensity polarized continuum model, are presented to rationalize these shifts in terms of the changed polarity of the medium surrounding the FAD cofactor.
通过连续波电子顺磁共振和电子-核双共振光谱法,以中性自由基形式的黄素腺嘌呤二核苷酸(FAD)辅因子作为天然存在的电子自旋探针,研究了(顺式,反式)-环丁烷嘧啶二聚体(CPD)结合诱导的大肠杆菌DNA光解酶的结构变化。电子顺磁共振/电子-核双共振光谱变化与CPD损伤与FAD的7,8-二甲基异咯嗪环之间的大距离(≥0.6nm)一致,这是最近对光解酶酶-底物复合物的模型计算所预测的。FAD异咯嗪部分内各向同性质子超精细耦合常数的小位移可以理解为,由于CPD与酶对接时水分子的位移,辅因子结合位点变得更具非极性。提出了使用密度泛函理论结合等密度极化连续介质模型对超精细耦合进行的分子轨道计算,以根据FAD辅因子周围介质极性的变化来合理化这些位移。